Jednotková matice

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Masivní vylepšení)
m (Nahrazení textu „<math>“ textem „<big>\(“)
Řádka 1: Řádka 1:
-
V [[lineární algebra|lineární algebře]] označuje pojem '''jednotková matice''' velikosti ''n'' čtvercovou [[matice|matici]] <math>n \times n</math>, která má na [[hlavní diagonála|hlavní diagonále]] jedničky a nuly na ostatních místech. Jednotková matice se značí ''I<sub>n</sub>'', případně jen ''I'', je-li velikost nepodstatná nebo ji lze odvodit z kontextu
+
V [[lineární algebra|lineární algebře]] označuje pojem '''jednotková matice''' velikosti ''n'' čtvercovou [[matice|matici]] <big>\(n \times n</math>, která má na [[hlavní diagonála|hlavní diagonále]] jedničky a nuly na ostatních místech. Jednotková matice se značí ''I<sub>n</sub>'', případně jen ''I'', je-li velikost nepodstatná nebo ji lze odvodit z kontextu
-
:<math>I_1 = \begin{bmatrix}1 \end{bmatrix},\ I_2 = \begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix},\ I_3 = \begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix},\ \cdots ,\ I_n = \begin{bmatrix}1 & 0 & \cdots & 0 \\0 & 1 & \cdots & 0 \\\vdots & \vdots & \ddots & \vdots \\0 & 0 & \cdots & 1 \end{bmatrix}</math>
+
:<big>\(I_1 = \begin{bmatrix}1 \end{bmatrix},\ I_2 = \begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix},\ I_3 = \begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix},\ \cdots ,\ I_n = \begin{bmatrix}1 & 0 & \cdots & 0 \\0 & 1 & \cdots & 0 \\\vdots & \vdots & \ddots & \vdots \\0 & 0 & \cdots & 1 \end{bmatrix}</math>
Důležitou vlastností ''I<sub>n</sub>'' je  
Důležitou vlastností ''I<sub>n</sub>'' je  
Řádka 8: Řádka 8:
je-li [[násobení matic]] definováno.  
je-li [[násobení matic]] definováno.  
-
Jednotková matice je [[inverzní matice|inverzní]] sama k sobě, zároveň je symetrická i ortogonální. Nemění se mocněním. Její odmocnina (A, pro které <math> A*A=I_n </math>) není jednoznačná (Může to být opět jednotková, ale může to být i matice nesymetrická, už vůbec ne diagonální).  
+
Jednotková matice je [[inverzní matice|inverzní]] sama k sobě, zároveň je symetrická i ortogonální. Nemění se mocněním. Její odmocnina (A, pro které <big>\( A*A=I_n </math>) není jednoznačná (Může to být opět jednotková, ale může to být i matice nesymetrická, už vůbec ne diagonální).  
Jednotková matice je speciálním případem [[diagonální matice]].
Jednotková matice je speciálním případem [[diagonální matice]].

Verze z 14. 8. 2022, 14:48

V lineární algebře označuje pojem jednotková matice velikosti n čtvercovou matici \(n \times n</math>, která má na hlavní diagonále jedničky a nuly na ostatních místech. Jednotková matice se značí In, případně jen I, je-li velikost nepodstatná nebo ji lze odvodit z kontextu


\(I_1 = \begin{bmatrix}1 \end{bmatrix},\ I_2 = \begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix},\ I_3 = \begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix},\ \cdots ,\ I_n = \begin{bmatrix}1 & 0 & \cdots & 0 \\0 & 1 & \cdots & 0 \\\vdots & \vdots & \ddots & \vdots \\0 & 0 & \cdots & 1 \end{bmatrix}</math>

Důležitou vlastností In je

AIn = A   a   InB = B

je-li násobení matic definováno.

Jednotková matice je inverzní sama k sobě, zároveň je symetrická i ortogonální. Nemění se mocněním. Její odmocnina (A, pro které \( A*A=I_n </math>) není jednoznačná (Může to být opět jednotková, ale může to být i matice nesymetrická, už vůbec ne diagonální).

Jednotková matice je speciálním případem diagonální matice.