The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Jednotková matice

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Masivní vylepšení)
m (Nahrazení textu „<math>“ textem „<big>\(“)
Řádka 1: Řádka 1:
-
V [[lineární algebra|lineární algebře]] označuje pojem '''jednotková matice''' velikosti ''n'' čtvercovou [[matice|matici]] <math>n \times n</math>, která má na [[hlavní diagonála|hlavní diagonále]] jedničky a nuly na ostatních místech. Jednotková matice se značí ''I<sub>n</sub>'', případně jen ''I'', je-li velikost nepodstatná nebo ji lze odvodit z kontextu
+
V [[lineární algebra|lineární algebře]] označuje pojem '''jednotková matice''' velikosti ''n'' čtvercovou [[matice|matici]] <big>\(n \times n</math>, která má na [[hlavní diagonála|hlavní diagonále]] jedničky a nuly na ostatních místech. Jednotková matice se značí ''I<sub>n</sub>'', případně jen ''I'', je-li velikost nepodstatná nebo ji lze odvodit z kontextu
-
:<math>I_1 = \begin{bmatrix}1 \end{bmatrix},\ I_2 = \begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix},\ I_3 = \begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix},\ \cdots ,\ I_n = \begin{bmatrix}1 & 0 & \cdots & 0 \\0 & 1 & \cdots & 0 \\\vdots & \vdots & \ddots & \vdots \\0 & 0 & \cdots & 1 \end{bmatrix}</math>
+
:<big>\(I_1 = \begin{bmatrix}1 \end{bmatrix},\ I_2 = \begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix},\ I_3 = \begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix},\ \cdots ,\ I_n = \begin{bmatrix}1 & 0 & \cdots & 0 \\0 & 1 & \cdots & 0 \\\vdots & \vdots & \ddots & \vdots \\0 & 0 & \cdots & 1 \end{bmatrix}</math>
Důležitou vlastností ''I<sub>n</sub>'' je  
Důležitou vlastností ''I<sub>n</sub>'' je  
Řádka 8: Řádka 8:
je-li [[násobení matic]] definováno.  
je-li [[násobení matic]] definováno.  
-
Jednotková matice je [[inverzní matice|inverzní]] sama k sobě, zároveň je symetrická i ortogonální. Nemění se mocněním. Její odmocnina (A, pro které <math> A*A=I_n </math>) není jednoznačná (Může to být opět jednotková, ale může to být i matice nesymetrická, už vůbec ne diagonální).  
+
Jednotková matice je [[inverzní matice|inverzní]] sama k sobě, zároveň je symetrická i ortogonální. Nemění se mocněním. Její odmocnina (A, pro které <big>\( A*A=I_n </math>) není jednoznačná (Může to být opět jednotková, ale může to být i matice nesymetrická, už vůbec ne diagonální).  
Jednotková matice je speciálním případem [[diagonální matice]].
Jednotková matice je speciálním případem [[diagonální matice]].

Verze z 14. 8. 2022, 14:48

V lineární algebře označuje pojem jednotková matice velikosti n čtvercovou matici \(n \times n</math>, která má na hlavní diagonále jedničky a nuly na ostatních místech. Jednotková matice se značí In, případně jen I, je-li velikost nepodstatná nebo ji lze odvodit z kontextu


\(I_1 = \begin{bmatrix}1 \end{bmatrix},\ I_2 = \begin{bmatrix}1 & 0 \\0 & 1 \end{bmatrix},\ I_3 = \begin{bmatrix}1 & 0 & 0 \\0 & 1 & 0 \\0 & 0 & 1 \end{bmatrix},\ \cdots ,\ I_n = \begin{bmatrix}1 & 0 & \cdots & 0 \\0 & 1 & \cdots & 0 \\\vdots & \vdots & \ddots & \vdots \\0 & 0 & \cdots & 1 \end{bmatrix}</math>

Důležitou vlastností In je

AIn = A   a   InB = B

je-li násobení matic definováno.

Jednotková matice je inverzní sama k sobě, zároveň je symetrická i ortogonální. Nemění se mocněním. Její odmocnina (A, pro které \( A*A=I_n </math>) není jednoznačná (Může to být opět jednotková, ale může to být i matice nesymetrická, už vůbec ne diagonální).

Jednotková matice je speciálním případem diagonální matice.