Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Newtonův integrál
Z Multimediaexpo.cz
(+ Masivní vylepšení) |
m (Nahrazení textu „<math>“ textem „<big>\(“) |
||
Řádka 3: | Řádka 3: | ||
==Definice== | ==Definice== | ||
- | Pokud je funkce [[funkce (matematika)|funkce]] < | + | Pokud je funkce [[funkce (matematika)|funkce]] <big>\(f(x)</math> [[spojitost|spojitá]] na [[interval (matematika)|intervalu]] <big>\(\langle a,b\rangle</math>, a funkce <big>\(F(x)</math> je k ní na <big>\(\langle a,b\rangle</math> primitivní, pak platí. |
- | :< | + | :<big>\(\int_a^b f(x) \mathrm{d}x = F(b)-F(a)</math> |
Řádka 11: | Řádka 11: | ||
Newtonova definice určitého integrálu požaduje spojitost funkce na daném intervalu. Pokud není funkce na intervalu spojitá v konečně mnoha bodech, lze interval v bodech nespojitosti rozdělit a hledat primitivní funkce po částech. Pro tento případ je ještě potřeba definovat takzvaný "zobecněný Newtonův integrál", který je v případě nespojitosti primitivní funkce v krajních bodech definován jako rozdíl [[jednostranná limita|jednostranných krajních limit]]. Tedy: | Newtonova definice určitého integrálu požaduje spojitost funkce na daném intervalu. Pokud není funkce na intervalu spojitá v konečně mnoha bodech, lze interval v bodech nespojitosti rozdělit a hledat primitivní funkce po částech. Pro tento případ je ještě potřeba definovat takzvaný "zobecněný Newtonův integrál", který je v případě nespojitosti primitivní funkce v krajních bodech definován jako rozdíl [[jednostranná limita|jednostranných krajních limit]]. Tedy: | ||
- | :< | + | :<big>\(\int_a^b f(x) \mathrm{d}x = \lim_{x\to b^-} F(x)-\lim_{x\to a^+} F(x)</math> |
==Zápis== | ==Zápis== | ||
- | Vzhledem k tomu, že < | + | Vzhledem k tomu, že <big>\(F(x)</math> je primitivní funkcí k <big>\(f(x)</math>, používáme obvykle při výpočtu zápis |
- | :< | + | :<big>\(\int_a^b f(x) \mathrm{d}x = {[F(x)]}_a^b = {F(x)|}_a^b = F(b)-F(a)</math> |
==Historie== | ==Historie== |
Verze z 14. 8. 2022, 14:49
Newtonův integrál představuje definici určitého integrálu, která je založena na existenci primitivní funkce. Pod pojmem Newtonův integrál se často rozumí i související pojem neurčitý integrál (primitivní funkce), zatímco pro odvozený výpočet určitého integrálu se používá pojem výpočet podle Newtonova-Leibnizova vzorce. Primitivní funkce může z definice existovat pouze pro funkci jedné proměnné, ale Newtonův vzorec lze aplikovat i ve vícerozměrných integrálech.
Obsah |
Definice
Pokud je funkce funkce \(f(x)</math> spojitá na intervalu \(\langle a,b\rangle</math>, a funkce \(F(x)</math> je k ní na \(\langle a,b\rangle</math> primitivní, pak platí.
- \(\int_a^b f(x) \mathrm{d}x = F(b)-F(a)</math>
Tento vztah bývá též označován jako Newton-Leibnizova formule, popř. se o něm také hovoří jako o základní větě integrálního počtu.
Newtonova definice určitého integrálu požaduje spojitost funkce na daném intervalu. Pokud není funkce na intervalu spojitá v konečně mnoha bodech, lze interval v bodech nespojitosti rozdělit a hledat primitivní funkce po částech. Pro tento případ je ještě potřeba definovat takzvaný "zobecněný Newtonův integrál", který je v případě nespojitosti primitivní funkce v krajních bodech definován jako rozdíl jednostranných krajních limit. Tedy:
- \(\int_a^b f(x) \mathrm{d}x = \lim_{x\to b^-} F(x)-\lim_{x\to a^+} F(x)</math>
Zápis
Vzhledem k tomu, že \(F(x)</math> je primitivní funkcí k \(f(x)</math>, používáme obvykle při výpočtu zápis
- \(\int_a^b f(x) \mathrm{d}x = {[F(x)]}_a^b = {F(x)|}_a^b = F(b)-F(a)</math>
Historie
Pojem primitivní funkce, jakož i objevení Newtonova-Leibnizova vzorce je připisován Gottfriedu Wilhelmovi Leibnizovi na podzim roku 1675 a Isaacu Newtonovi roku 1666. I když se vedly o autorství objevu celého diferenciálního počtu rozepře, oba matematici objev učinili zřejmě nezávisle na sobě.
Jejich snaha byla zjistit obecný vzorec pro výpočet plochy pod křivkou. V případě Isaaca Newtona byla tato snaha motivována i využitím v mechanice. V 19. století se při snaze eliminovat nejasně definované pojmy infinitesimálních veličin Leibnize a Newtona rozvinula metoda založená na limitě přibližných součtů, dnes nazývaná Riemannův integrál. Na počátku dvacátého století pak vznikla teorie obecného integrálu, nazývaná integrálem Lebesgueovým.
Související články
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |