The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Koeficient šikmosti

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (Nahrazení textu „<math>“ textem „<big>\(“)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
Řádka 1: Řádka 1:
-
'''Koeficient šikmosti''' je [[Charakteristika náhodné veličiny|charakteristika]] rozdělení [[Náhodná veličina|náhodné veličiny]], která popisuje jeho nesymetrii. Označuje se symbolem <big>\(\gamma_1</math>.  
+
'''Koeficient šikmosti''' je [[Charakteristika náhodné veličiny|charakteristika]] rozdělení [[Náhodná veličina|náhodné veličiny]], která popisuje jeho nesymetrii. Označuje se symbolem <big>\(\gamma_1\)</big>.  
==Definice==
==Definice==
Koeficient šikmosti je definován jako
Koeficient šikmosti je definován jako
-
:<big>\(\gamma_1 = \frac{\mu_3}{\sigma^3} = \frac{\operatorname{E}[X-\operatorname{E}(X)]^3}{(\operatorname{var}\,X)^{3/2}}</math>,
+
:<big>\(\gamma_1 = \frac{\mu_3}{\sigma^3} = \frac{\operatorname{E}[X-\operatorname{E}(X)]^3}{(\operatorname{var}\,X)^{3/2}}\)</big>,
-
kde <big>\(\mu_3</math> je třetí [[centrální moment]], <big>\(\sigma</math> je [[směrodatná odchylka]], <big>\(\operatorname{E}(X)</math> je [[střední hodnota]] a <big>\(\operatorname{var}\,X</math> je [[rozptyl (statistika)|rozptyl]].
+
kde <big>\(\mu_3\)</big> je třetí [[centrální moment]], <big>\(\sigma\)</big> je [[směrodatná odchylka]], <big>\(\operatorname{E}(X)\)</big> je [[střední hodnota]] a <big>\(\operatorname{var}\,X\)</big> je [[rozptyl (statistika)|rozptyl]].
==Vlastnosti==
==Vlastnosti==
Řádka 19: Řádka 19:
Výběrový koeficient šikmosti je definován vzorcem
Výběrový koeficient šikmosti je definován vzorcem
-
:<big>\(g_1 = \frac{m_3}{m_2^{3/2}} = \sqrt{n}\frac{\sum_{i=1}^n (x_i - \overline{x})^3}{\left(\sum_{i=1}^n (x_i - \overline{x})^2 \right)^{\frac{3}{2}}}</math>,
+
:<big>\(g_1 = \frac{m_3}{m_2^{3/2}} = \sqrt{n}\frac{\sum_{i=1}^n (x_i - \overline{x})^3}{\left(\sum_{i=1}^n (x_i - \overline{x})^2 \right)^{\frac{3}{2}}}\)</big>,
-
kde <big>\(\overline{x}</math> je [[Výběrový průměr|výběrový průměr]], <big>\(m_2</math> je [[výběrový rozptyl]] a <big>\(m_3</math> je třetí [[Centrální moment#Výběrový centrální moment|výběrový centrální moment]].
+
kde <big>\(\overline{x}\)</big> je [[Výběrový průměr|výběrový průměr]], <big>\(m_2\)</big> je [[výběrový rozptyl]] a <big>\(m_3\)</big> je třetí [[Centrální moment#Výběrový centrální moment|výběrový centrální moment]].
Tento odhad je [[Vychýlený odhad|vychýlený]]. Méně vychýlené odhady dostaneme, když místo výběrových centrálních momentů použijeme nevychýlené odhady centrálních momentů:<ref>{{cite web|title=Estimating and Comparing Kurtosis and Skewness from and Arbitrary Population|url=http://www.misug.org/mifolder/LAn_Skewness_Kurtosis.pdf|publisher=Michigan SAS Users Group|accessdate=18 July 2011}}</ref>
Tento odhad je [[Vychýlený odhad|vychýlený]]. Méně vychýlené odhady dostaneme, když místo výběrových centrálních momentů použijeme nevychýlené odhady centrálních momentů:<ref>{{cite web|title=Estimating and Comparing Kurtosis and Skewness from and Arbitrary Population|url=http://www.misug.org/mifolder/LAn_Skewness_Kurtosis.pdf|publisher=Michigan SAS Users Group|accessdate=18 July 2011}}</ref>
Řádka 30: Řádka 30:
b_1 = \frac{m_3}{M_2^{3/2}} &= \left(\frac{n-1}{n}\right)^{2/3}g_1
b_1 = \frac{m_3}{M_2^{3/2}} &= \left(\frac{n-1}{n}\right)^{2/3}g_1
\end{align}
\end{align}
-
</math>
+
\)</big>
-
Pro rozptyly těchto odhadů platí <big>\(\operatorname{var}\,b_1 < \operatorname{var}\,g_1 < \operatorname{var}\,G_1</math>.
+
Pro rozptyly těchto odhadů platí <big>\(\operatorname{var}\,b_1 < \operatorname{var}\,g_1 < \operatorname{var}\,G_1\)</big>.
== Reference ==
== Reference ==

Aktuální verze z 14. 8. 2022, 14:52

Koeficient šikmosti je charakteristika rozdělení náhodné veličiny, která popisuje jeho nesymetrii. Označuje se symbolem \(\gamma_1\).

Obsah

Definice

Koeficient šikmosti je definován jako

\(\gamma_1 = \frac{\mu_3}{\sigma^3} = \frac{\operatorname{E}[X-\operatorname{E}(X)]^3}{(\operatorname{var}\,X)^{3/2}}\),

kde \(\mu_3\) je třetí centrální moment, \(\sigma\) je směrodatná odchylka, \(\operatorname{E}(X)\) je střední hodnota a \(\operatorname{var}\,X\) je rozptyl.

Vlastnosti

Nulová šikmost značí, že hodnoty náhodné veličiny jsou rovnoměrně rozděleny vlevo a vpravo od střední hodnoty. Kladná šikmost značí, že vpravo od průměru se vyskytují odlehlejší hodnoty nežli vlevo (rozdělení má tzv. pravý ocas) a většina hodnot se nachází blízko vlevo od průměru. U záporné šikmosti je tomu naopak.

Symetrická rozdělení včetně normálního rozdělení mají šikmost nula.

Pro rozdělení s kladnou šikmostí obvykle platí, že jeho modus je menší nežli medián a ten je menší nežli střední hodnota. Pro zápornou šikmost opět naopak.

Výběrový koeficient šikmosti

Výběrový koeficient šikmosti je definován vzorcem

\(g_1 = \frac{m_3}{m_2^{3/2}} = \sqrt{n}\frac{\sum_{i=1}^n (x_i - \overline{x})^3}{\left(\sum_{i=1}^n (x_i - \overline{x})^2 \right)^{\frac{3}{2}}}\),

kde \(\overline{x}\) je výběrový průměr, \(m_2\) je výběrový rozptyl a \(m_3\) je třetí výběrový centrální moment.

Tento odhad je vychýlený. Méně vychýlené odhady dostaneme, když místo výběrových centrálních momentů použijeme nevychýlené odhady centrálních momentů:[1]

\( \begin{align} G_1 = \frac{M_3}{M_2^{3/2}} &= \frac{\sqrt{n(n-1)}}{n-2}g_1 \\ b_1 = \frac{m_3}{M_2^{3/2}} &= \left(\frac{n-1}{n}\right)^{2/3}g_1 \end{align} \)

Pro rozptyly těchto odhadů platí \(\operatorname{var}\,b_1 < \operatorname{var}\,g_1 < \operatorname{var}\,G_1\).

Reference

  1. . Dostupné online.