Přejeme Vám krásné svátky a 52 týdnů pohody a štěstí v roce 2025 !
Věta o kritické přímce
Z Multimediaexpo.cz
(+ Výrazné vylepšení) |
m (Nahrazení textu „</math>“ textem „\)</big>“) |
||
(Není zobrazena jedna mezilehlá verze.) | |||
Řádka 3: | Řádka 3: | ||
== Základní pojmy == | == Základní pojmy == | ||
{{Podrobně|Riemannova funkce zeta|Riemannova hypotéza}} | {{Podrobně|Riemannova funkce zeta|Riemannova hypotéza}} | ||
- | [[Riemannova zeta-funkce]] vznikne [[holomorfní funkce|holomorfním]] rozšířením [[funkce (matematika)|funkce]] < | + | [[Riemannova zeta-funkce]] vznikne [[holomorfní funkce|holomorfním]] rozšířením [[funkce (matematika)|funkce]] <big>\(\zeta(s) = |
- | \sum_{n=1}^\infty \frac{1}{n^s}</ | + | \sum_{n=1}^\infty \frac{1}{n^s}\)</big> na celou [[komplexní rovina|komplexní rovinu]] s výjimkou bodu ''s = 1''. Takto definovaná funkce nabývá nulové hodnoty v každém záporném [[Sudá a lichá čísla|sudém čísle]]. Tato čísla se nazývají ''triviální nuly'' Riemannovy zeta-funkce. Ostatní body, v nichž je funkce nulová, se nazývají ''netriviální nuly''. Podle [[Riemannova hypotéza|Riemannovy hypotézy]] mají všechny netriviální nuly zeta-funkce [[reálná část komplexního čísla|reálnou část]] rovnou 1/2, tj. leží na přímce {''s | Re(s) = 1/2''} v komplexní rovině. Tato přímka se nazývá ''kritická přímka''. |
== Historie == | == Historie == |
Aktuální verze z 14. 8. 2022, 14:54
Věta o kritické přímce je matematická věta tvrdící, že jisté nenulové procento netriviálních nul Riemannovy zeta funkce leží na kritické přímce Re(s) = 1/2.
Obsah |
Základní pojmy
- Podrobnější informace naleznete na stránce: Riemannova funkce zeta
Riemannova zeta-funkce vznikne holomorfním rozšířením funkce \(\zeta(s) = \sum_{n=1}^\infty \frac{1}{n^s}\) na celou komplexní rovinu s výjimkou bodu s = 1. Takto definovaná funkce nabývá nulové hodnoty v každém záporném sudém čísle. Tato čísla se nazývají triviální nuly Riemannovy zeta-funkce. Ostatní body, v nichž je funkce nulová, se nazývají netriviální nuly. Podle Riemannovy hypotézy mají všechny netriviální nuly zeta-funkce reálnou část rovnou 1/2, tj. leží na přímce {s | Re(s) = 1/2} v komplexní rovině. Tato přímka se nazývá kritická přímka.
Historie
První verzi věty o kritické přímce (pro jisté malé procento) dokázal Atle Selberg, čímž značně vylepšil do té doby nejsilnější známý výsledek Hardyho a Littlewooda, podle kterých leží na kritické přímce nekonečně mnoho netriviálních nul.
Norman Levinson vylepšil odhad ve větě na jednu třetinu nul,[1] a Conrey na dvě pětiny.[2]
Vztah k Riemannově hypotéze
Větu o kritické přímce lze považovat za částečné (slabé) řešení Riemannovy hypotézy. Důsledkem Riemannovy hypotézy je, že skutečná hodnota se rovná 1. Ovšem opačná implikace neplatí – tvrzení, že skoro všechny netriviální nuly leží na kritické přímce pro důkaz Riemannovy hypotézy, nestačí.
Reference
- ↑ Levinson, N., More than one-third of the zeros of Riemann's zeta function are on σ = 1/2, Adv. in Math. 13 (1974), 383-436
- ↑ Conrey, J. B., More than two fifths of the zeros of the Riemann zeta function are on the critical line, J. reine angew. Math. 399 (1989), 1-16
Externí odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |