Multimediaexpo.cz je již 18 let na českém internetu !!
Matematická analýza
Z Multimediaexpo.cz
m (Nahrazení textu) |
(++) |
||
(Není zobrazena jedna mezilehlá verze.) | |||
Řádka 12: | Řádka 12: | ||
| titul = Real and Abstract Analysis | | titul = Real and Abstract Analysis | ||
| vydavatel = Springer-Verlag}}</ref> a [[Analytická funkce|analytických funkcí]]. Metody matematické analýzy mají velký význam v přírodních a technických vědách. | | vydavatel = Springer-Verlag}}</ref> a [[Analytická funkce|analytických funkcí]]. Metody matematické analýzy mají velký význam v přírodních a technických vědách. | ||
- | [[Soubor: | + | [[Soubor:Абак-2014.jpg|thumb|240px|Replika římského abaku. Namísto bronzových kuliček se používaly oblázky (latinsky ''calculus'').]] |
- | Základy matematické analýzy se zejména v anglosaských zemích označují jako '''calculus''', kalkul(us), což se po roce 2000 prosazuje i do češtiny.<ref>Ilja Černý, Úvod do inteligentního kalkulu : 1000 příkladů z elementární analýzy. Praha : Academia, 2002</ref> Toto označení pochází z [[latina|latinského]] slova ''calculus'', [[oblázek]]. Ve | + | Základy matematické analýzy se zejména v anglosaských zemích označují jako '''calculus''', kalkul(us), což se po roce 2000 prosazuje i do češtiny.<ref>Ilja Černý, Úvod do inteligentního kalkulu : 1000 příkladů z elementární analýzy. Praha : Academia, 2002</ref> Toto označení pochází z [[latina|latinského]] slova ''calculus'', [[oblázek]]. Ve starověkém Římě se oblázky používaly v [[Počítadlo#Římský abakus|abakusech]], což byly desky s drážkami, ve kterých se kaménky posunovaly obdobně jako korálky na drátěném počítadle. |
== Předmět zkoumání == | == Předmět zkoumání == | ||
Základními oblastmi matematické analýzy jsou teorie posloupností, limit, [[integrální počet]] a [[diferenciální počet]] na množině reálných čísel. Dále sem patří teorie obyčejných i parciálních [[Diferenciální rovnice|diferenciálních rovic]], integrálních rovnic, funkcí komplexní proměnné, diferenciální geometrie, variační počet a další obory.<ref>G. J. Šilov: Matematická analýza. Alfa, Bratislava 1974, str. 9</ref> | Základními oblastmi matematické analýzy jsou teorie posloupností, limit, [[integrální počet]] a [[diferenciální počet]] na množině reálných čísel. Dále sem patří teorie obyčejných i parciálních [[Diferenciální rovnice|diferenciálních rovic]], integrálních rovnic, funkcí komplexní proměnné, diferenciální geometrie, variační počet a další obory.<ref>G. J. Šilov: Matematická analýza. Alfa, Bratislava 1974, str. 9</ref> | ||
Řádka 34: | Řádka 34: | ||
== Aplikace == | == Aplikace == | ||
Vývoj a použití kalkulu (diferenciálního a integrálního počtu) a matematické analýzy měl a má dalekosáhlé důsledky pro téměř všechny aspekty života v moderním světě. Je používán téměř ve všech [[věda|vědách]], především ve [[fyzika|fyzice]]. Prakticky všechny moderní výdobytky, například různé [[stavební technika|stavební techniky]], [[letectvo|letectví]] a jiné technologie používají [[infinitesimální počet]] přímo ve svých základech. Mnoho algebraických vzorců, které jsou dnes používané v [[balistika|balistice]], [[energetice]] a jiných praktických vědách, byly odvozené prostřednictvím kalkulu. | Vývoj a použití kalkulu (diferenciálního a integrálního počtu) a matematické analýzy měl a má dalekosáhlé důsledky pro téměř všechny aspekty života v moderním světě. Je používán téměř ve všech [[věda|vědách]], především ve [[fyzika|fyzice]]. Prakticky všechny moderní výdobytky, například různé [[stavební technika|stavební techniky]], [[letectvo|letectví]] a jiné technologie používají [[infinitesimální počet]] přímo ve svých základech. Mnoho algebraických vzorců, které jsou dnes používané v [[balistika|balistice]], [[energetice]] a jiných praktických vědách, byly odvozené prostřednictvím kalkulu. | ||
- | |||
- | |||
- | |||
- | === Související články | + | == Reference == |
+ | <references/> | ||
+ | == Související články == | ||
* [[Lineární algebra]] | * [[Lineární algebra]] | ||
- | === Doporučená literatura | + | === Doporučená literatura == |
* Matematická analýza nejen pro fyziky (I) až (III) , Praha : [[Matfyzpress]], 2004 až 2007, ISBN 80-86732-25-8, ISBN 80-7378-007-0, ISBN 978-80-7378-020-3, - [[Jiří Kopáček]] | * Matematická analýza nejen pro fyziky (I) až (III) , Praha : [[Matfyzpress]], 2004 až 2007, ISBN 80-86732-25-8, ISBN 80-7378-007-0, ISBN 978-80-7378-020-3, - [[Jiří Kopáček]] | ||
== Externí odkazy == | == Externí odkazy == | ||
- | * [http://www.21stoleti.cz/view.php?cisloclanku=2007021929 Největší vědecké spory historie: Kdo první objevil derivaci?] | + | * [http://www.21stoleti.cz/view.php?cisloclanku=2007021929 21stoleti.cz – Největší vědecké spory historie: Kdo první objevil derivaci?] |
- | |||
{{Článek z Wikipedie}} | {{Článek z Wikipedie}} | ||
+ | [[Kategorie:Matematická analýza|Matematická analýza]] |
Aktuální verze z 12. 8. 2023, 14:07
Matematická analýza (řecky ανάλυσις [] „řešení“, starořecky ἀναλύειν ánalýein „řešit“) je jednou ze základních disciplín matematiky. Jejími základními pojmy jsou funkce, limita (posloupností a funkcí), derivace a integrál.[1] Zahrnuje však také teorii míry, nekonečných řad[2] a analytických funkcí. Metody matematické analýzy mají velký význam v přírodních a technických vědách.
Základy matematické analýzy se zejména v anglosaských zemích označují jako calculus, kalkul(us), což se po roce 2000 prosazuje i do češtiny.[3] Toto označení pochází z latinského slova calculus, oblázek. Ve starověkém Římě se oblázky používaly v abakusech, což byly desky s drážkami, ve kterých se kaménky posunovaly obdobně jako korálky na drátěném počítadle.
Obsah |
Předmět zkoumání
Základními oblastmi matematické analýzy jsou teorie posloupností, limit, integrální počet a diferenciální počet na množině reálných čísel. Dále sem patří teorie obyčejných i parciálních diferenciálních rovic, integrálních rovnic, funkcí komplexní proměnné, diferenciální geometrie, variační počet a další obory.[4] Původně se matematická analýza studovala v oboru reálných, později komplexních čísel. V současnosti se však její metody aplikují v široké třídě topologických prostorů. Důvodem je jednak možnost aplikace na širší třídu problémů (například studium funkcionální analýzy), jednak hlubší porozumění analýze v abstraktnějších prostorech, jež se už mnohokrát ukázalo být přímo aplikovatelné na klasické problémy. Jedním z příkladů by mohla být Fourierova analýza, kde jsou funkce vyjádřeny jako určité nekonečné řady (s komplexním exponentem nebo řady trigonometrických funkcí). V reálném světě je tato dekompozice užitečná k rozložení libovolné (zvukové) vlny až na jednotlivé frekvenční součásti. Koeficienty výrazu ve Fourierově rozvoji funkce mohou být také uvažovány jako vektory nekonečně-dimenzionálního prostoru, který je známý jako Hilbertův prostor. Studium funkcí definovaných v takto dostatečně obecných podmínkách také poskytuje pohodlnou metodu získávání informací o tom, jak se funkce mění v prostoru, stejně jako v čase. Při řešení parciálních diferenciálních rovnic se tato technika nazývá oddělení proměnných.
Historie
První kroky v analýze byly učiněny již v počátcích řecké matematiky v období antiky. Například nekonečná geometrická řada byla známa již tehdy díky Zénonovým aporiím.[5] Později řečtí matematici jako například Eudoxos a Archimedes vytvořili ještě jasnější, ovšem zatím neformální, použití konceptu limit a konvergence, když používali metodu vyčerpání ke spočtení plochy a obsahu/objemu dvou- a třírozměrných objektů.[6] V 12. století v Indii vytvořil matematik Bhaskara koncepci diferenciálního počtu, příklady derivačního a diferenciálního koeficientu a také tvrzení, které je dnes známé jako Rolleova věta. Základy matematické analýzy vznikají až v době, kdy byl přesně definován infinitesimální počet, nezávisle na sobě Leibnizem a Newtonem. Úspěch infinitesimálního počtu se vyvinul časem na diferenciální rovnice, vektorový počet, variační počet, komplexní analýzu a diferenciální topologii.
Aplikace
Vývoj a použití kalkulu (diferenciálního a integrálního počtu) a matematické analýzy měl a má dalekosáhlé důsledky pro téměř všechny aspekty života v moderním světě. Je používán téměř ve všech vědách, především ve fyzice. Prakticky všechny moderní výdobytky, například různé stavební techniky, letectví a jiné technologie používají infinitesimální počet přímo ve svých základech. Mnoho algebraických vzorců, které jsou dnes používané v balistice, energetice a jiných praktických vědách, byly odvozené prostřednictvím kalkulu.
Reference
- ↑ Whittaker, Watson. [s.l.] : [s.n.], 1927. Kapitola 3.
- ↑ HEWITT, Edwin; STROMBERG, Karl. Real and Abstract Analysis. [s.l.] : Springer-Verlag, 1965.
- ↑ Ilja Černý, Úvod do inteligentního kalkulu : 1000 příkladů z elementární analýzy. Praha : Academia, 2002
- ↑ G. J. Šilov: Matematická analýza. Alfa, Bratislava 1974, str. 9
- ↑ STILLWELL, John. Real and Abstract Analysis. [s.l.] : [s.n.], 2004. 170 s. Kapitola Infinite Series.
„Nekonečné řady byly v řecké matematice přítomny, [...] Není pochyb, že Zénonův dichotomický paradox (Sekce 4.1) se zabývá například rozložením čísla 1 do nekonečné řady 1/2 + 1/2^2 + 1/2^3 + 1/2^4 + ... a že Archimedes nalezl oblast parabolického segmentu (Sekce 4.4) vlastně sčítáním nekonečné řady 1 + 1/4 + 1/4^2 + 1/4^3 + ... = 4/3. Oba tyto příklady jsou zvláštními případy toho, co dnes označujeme jako součet geometrické řady“ - ↑ (, 1958)Smith. [s.l.] : [s.n.], 1958.
Související články
= Doporučená literatura
- Matematická analýza nejen pro fyziky (I) až (III) , Praha : Matfyzpress, 2004 až 2007, ISBN 80-86732-25-8, ISBN 80-7378-007-0, ISBN 978-80-7378-020-3, - Jiří Kopáček
Externí odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |