Nerovnice
Z Multimediaexpo.cz
m (Nahrazení textu „</math>“ textem „\)</big>“) |
m (Nahrazení textu „\empty“ textem „\emptyset“) |
||
Řádka 13: | Řádka 13: | ||
Řešením nerovnice je taková množina všech <big>\(x \in D\)</big>, která splňuje výše uvedenou relaci obou stran nerovnice. V oboru reálných čísel může mít nerovnice tato řešení: | Řešením nerovnice je taková množina všech <big>\(x \in D\)</big>, která splňuje výše uvedenou relaci obou stran nerovnice. V oboru reálných čísel může mít nerovnice tato řešení: | ||
- | * '''prázdná množina''': nerovnice nemá řešení; např. <big>\(x^2 < 0\)</big>, řešení: <big>\(x\in\ | + | * '''prázdná množina''': nerovnice nemá řešení; např. <big>\(x^2 < 0\)</big>, řešení: <big>\(x\in\emptyset\)</big> |
* '''jedna nebo více diskrétních hodnot''': kořen rovnice <big>\(L(x) = P(x)\)</big>; např. <big>\(\cos x \ge 1\)</big>, řešení: <big>\(x = 2 \pi k\)</big>, <big>\(k\in\mathbb{Z}\)</big> | * '''jedna nebo více diskrétních hodnot''': kořen rovnice <big>\(L(x) = P(x)\)</big>; např. <big>\(\cos x \ge 1\)</big>, řešení: <big>\(x = 2 \pi k\)</big>, <big>\(k\in\mathbb{Z}\)</big> | ||
* '''interval''': všechny typy [[interval (matematika)|intervalů]]; např. <big>\(x^2 -1 \le 0\)</big>, řešení: <big>\(x \in \lang -1, 1 \rang \)</big> | * '''interval''': všechny typy [[interval (matematika)|intervalů]]; např. <big>\(x^2 -1 \le 0\)</big>, řešení: <big>\(x \in \lang -1, 1 \rang \)</big> |
Aktuální verze z 11. 7. 2023, 18:16
Uvažujme dvě funkce \(L(x), P(x)\), které jsou definovány na nějaké množině \(D\). Zápis
- \(L(x) > P(x)\)
resp.
- \(L(x) \geq P(x)\)
resp.
- \(L(x) < P(x)\)
resp.
- \(L(x) \le P(x)\)
se nazývá nerovnicí o jedné neznámé \(x\). Funkce \(L(x)\) se nazývá levá strana nerovnice a \(P(x)\) se nazývá pravá strana nerovnice. Vztah obou stran nerovnice (relaci) určuje znaménko nerovnosti, které se v nerovnici vyskytuje právě jednou.
Obsah |
Klasifikace řešení
Řešením nerovnice je taková množina všech \(x \in D\), která splňuje výše uvedenou relaci obou stran nerovnice. V oboru reálných čísel může mít nerovnice tato řešení:
- prázdná množina: nerovnice nemá řešení; např. \(x^2 < 0\), řešení: \(x\in\emptyset\)
- jedna nebo více diskrétních hodnot: kořen rovnice \(L(x) = P(x)\); např. \(\cos x \ge 1\), řešení: \(x = 2 \pi k\), \(k\in\mathbb{Z}\)
- interval: všechny typy intervalů; např. \(x^2 -1 \le 0\), řešení: \(x \in \lang -1, 1 \rang \)
- sjednocení intervalů: např. \(4 - x^2 < 0 \), řešení: \(x \in ( -\infty, -2 ) \cup ( 2, \infty)\)
Početní postup řešení
Při hledání řešení nerovnice postupujeme obdobně jako při řešení rovnice: ekvivalentními úpravami se snažíme nerovnici převést na jednodušší tvar, z něhož jsme schopni určit řešení nerovnice.
Při řešení nerovnic se často využívá, že pro dvě čísla \(a, b\) platí, že pokud \(a b > 0\), pak je buď \(a > 0\) a \(b > 0\) nebo \(a < 0\) a \(b < 0\). Často se také využívá skutečnosti, že pro \(a > b\) platí \(\frac{1}{a} < \frac{1}{b}\).
Je třeba mít na paměti, že úpravy nerovnice mají, na rozdíl od úprav rovnic, vliv také na relaci obou stran nerovnice. Např. pokud nerovnici \(-2 x > -1\) vynásobíme \(-1\), dostaneme nerovnici \(2 x < 1\), tzn. došlo ke změně > na <.
Grafické řešení
U nerovnic se často užívá grafické řešení, neboť je názorné. Známe-li totiž kořeny rovnice \(f(x) = 0\), můžeme je využít při řešení nerovnice \(f(x) > 0\), neboť kořeny určují krajní body intervalů, které jsou řešením nerovnice. Grafické řešení pomáhá rychle určit, které z intervalů jsou řešením a které nikoli.
Rozdělení
Podobně jako u rovnic lze také nerovnice rozdělit na algebraické a nealgebraické.
Související články
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |