V encyklopedii Allmultimedia.cz byl aktivován špičkový grafický skin Foreground.
Foreground plně podporuje – RWD, HTML 5.0, Super Galerii a YouTube 2.0 !

Racionální funkce

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (Nahrazení textu „</math>“ textem „\)</big>“)
(+ Integrace racionálních funkcí)
 
Řádka 7: Řádka 7:
Je-li <big>\(Q_n(x)\)</big> konstantou, je racionální funkce ve [[polynomická funkce|funkcí polynomickou]], pokud racionální funkci nelze vyjádřit ve tvaru s konstantním jmenovatelem, jde o '''racionální lomenou funkci'''.  
Je-li <big>\(Q_n(x)\)</big> konstantou, je racionální funkce ve [[polynomická funkce|funkcí polynomickou]], pokud racionální funkci nelze vyjádřit ve tvaru s konstantním jmenovatelem, jde o '''racionální lomenou funkci'''.  
-
Racionální funkci je obecně možné rozložit na [[součet]] polynomu a ryze racionální lomené funkce (ve které je stupeň polynomu <big>\(P_m(x)\)</big> menší než stupeň polynomu <big>\(Q_n(x)\)</big>). Důležitá je vlastnost, že ryze racionální lomenou funkci lze vyjádřit jako součet [[parciální zlomek|parciálních zlomků]] poměrně jednoduchého tvaru, což například usnadňuje její integraci.
+
Racionální funkci je obecně možné rozložit na [[Sčítání|součet]] polynomu a ryze racionální lomené funkce (ve které je stupeň polynomu <big>\(P_m(x)\)</big> menší než stupeň polynomu <big>\(Q_n(x)\)</big>). Důležitá je vlastnost, že ryze racionální lomenou funkci lze vyjádřit jako součet [[Rozklad na parciální zlomky|parciálních&nbsp;zlomků]] poměrně jednoduchého tvaru, což například usnadňuje její integraci.
 +
 
 +
== Související články ==
 +
* [[Integrace racionálních funkcí]]
{{Článek z Wikipedie}}
{{Článek z Wikipedie}}
[[Kategorie:Matematické funkce]]
[[Kategorie:Matematické funkce]]

Aktuální verze z 22. 4. 2025, 09:03

Racionální funkce je funkce ve tvaru podílu dvou mnohočlenů:

\(f(x)= \frac{P_m(x)}{Q_n(x)} = \frac{a_m x^m+a_{m-1} x^{m-1}+\dotsb +a_1x+a_0}{b_n x^n+b_{n-1} x^{n-1}+\dotsb +b_1x+b_0}\),

kde \(Q_n(x)\) není nulový mnohočlen.

Je-li \(Q_n(x)\) konstantou, je racionální funkce ve funkcí polynomickou, pokud racionální funkci nelze vyjádřit ve tvaru s konstantním jmenovatelem, jde o racionální lomenou funkci.

Racionální funkci je obecně možné rozložit na součet polynomu a ryze racionální lomené funkce (ve které je stupeň polynomu \(P_m(x)\) menší než stupeň polynomu \(Q_n(x)\)). Důležitá je vlastnost, že ryze racionální lomenou funkci lze vyjádřit jako součet parciálních zlomků poměrně jednoduchého tvaru, což například usnadňuje její integraci.

Související články