Vážení zákazníci a čtenáři – od 28. prosince do 2. ledna máme zavřeno.
Přejeme Vám krásné svátky a 52 týdnů pohody a štěstí v roce 2025 !

Úplný svaz

Z Multimediaexpo.cz

Verze z 14. 4. 2024, 17:22; Sysop (diskuse | příspěvky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Úplný svaz je matematický pojem z oboru teorie uspořádání, který vymezuje mezi uspořádanými množinami ty, které jsou uspořádány „rozumně“ (to znamená, že zachovávají suprema a infima).

Na rozdíl od svazu, kde je zachování suprem a infim požadováno pro dvouprvkové podmnožiny, pro úplný svaz je toto požadováno pro libovolné (tedy i nekonečné) podmnožiny.

Obsah

Definice

Množinu \( X \,\! \) uspořádanou relací \( R \,\! \) nazveme úplným svazem, pokud pro každou svou podmnožinu obsahuje i její supremum a infimum.
\( ( \forall Y \subseteq X) (\exists i,s \in X) ( i = \inf\nolimits_R(Y) \land s = \sup\nolimits_R(Y) ) \,\! \)

Příklady a vlastnosti

Už z názvu je vidět, že každý úplný svaz je zároveň svaz. (Pokud obsahuje supremum a infimum pro každou podmnožinu, pak je obsahuje určitě i pro dvouprvkové podmnožiny – a to je přesně to, o co jde v definici svazu).

Je proto přirozené hledat příklady úplného svazu mezi svazy a ptát se, které z nich jsou úplné.

Úplný svaz potenční algebry

Potenční algebra (tj. množina všech podmnožin nějaké množiny s uspořádáním relací „být podmnožinou“) je úplný svaz, protože sjednocení je v tomto případě supremem a průnik infimem.
Pokud je tedy \( X = \mathbb{P}(X_0) \,\!\) potenční množina a \( Y \subseteq X \,\! \) je nějakou množinou podmnožin \( X_0 \,\!\)

  • \( inf_{\subseteq}(Y) = \bigcap Y \,\! \)
  • \( sup_{\subseteq}(Y) = \bigcup Y \,\! \)

Svazy, které nejsou úplné

Úplný svaz musí mít největší prvek a nejmenší prvek – musí totiž obsahovat supremum a infimum sebe sama (tj. celé množiny \( X \,\! \)).

Z toho vyplvývá, že například přirozená čísla nebo reálná čísla při běžném uspořádání podle velikosti nemohou být úplný svaz (nemají totiž největší prvek) – jedná se o dva příklady svazu, který není úplným svazem.

Zúplnění svazu reálných čísel

O reálných číslech \( \mathbb{R} \,\! \) víme, že se jedná o svaz, navíc jejich omezené množiny mají supremum a infimum. Pokud by se podařilo nějak přidělit supremum a infimum i neomezeným množinám reálných čísel, získali bychom úplný svaz.

Uvažujme o množině, která vznikne z \( \mathbb{R} \,\! \) jejich rozšířením o dva prvky: \( +\infty \,\! \) je větší, než všechny čísla z \( \mathbb{R} \,\! \) a \( -\infty \,\! \) je menší, než všechna čísla z \( \mathbb{R} \,\! \). (Díky tranzitivitě uspořádání platí také, že \( -\infty < +\infty \,\! \) ).

Získali jsme množinu \( \mathbb{R} \cup \{ -\infty, +\infty \} \,\! \), která již je úplný svaz:

  • omezené množiny z \( \mathbb{R} \,\! \) mají supremum a infimum v \( \mathbb{R} \,\! \)
  • zdola neomezená množina z \( \mathbb{R} \,\! \) má infimum \( -\infty \,\! \)
  • shora neomezená množina z \( \mathbb{R} \,\! \) má supremum \( +\infty \,\! \)
  • množina obsahující \( -\infty \,\! \) má infimum \( -\infty \,\! \)
  • množina obsahující \( +\infty \,\! \) má supremum \( +\infty \,\! \)

Související články

Externí odkazy