Přejeme Vám krásné svátky a 52 týdnů pohody a štěstí v roce 2025 !
Koeficient špičatosti
Z Multimediaexpo.cz
Koeficient špičatosti (excesu) je charakteristika rozdělení náhodné veličiny, která porovnává dané rozdělení s normálním rozdělením pravděpodobnosti.
Koeficient špičatosti se obvykle označuje \(\gamma_2\).
Obsah |
Definice
Koeficient špičatosti je definován vztahem
- \(\gamma_2 = \frac{\mu_4}{\sigma^4} - 3 = \frac{\operatorname{E}[X-\operatorname{E}(X)]^4}{\left(\operatorname{var}\,X\right)^2} - 3\),
kde \(\mu_4\) je čtvrtý centrální moment, \(\sigma\) je směrodatná odchylka, \(\operatorname{E}(X)\) označuje střední hodnotu a \(\operatorname{var}\,X\) je rozptyl.
Vlastnosti
Normální rozdělení má špičatost nula. Kladná špičatost značí, že většina hodnot náhodné veličiny leží blízko její střední hodnoty a hlavní vliv na rozptyl mají málo pravděpodobné odlehlé hodnoty. Křivka hustoty je špičatější, nežli u normálního rozdělení. Záporná špičatost značí, že rozdělení je rovnoměrnější a jeho křivka hustoty je plošší nežli u normálního rozdělení.
Špičatost rozdělení nezávisí na lineární transformaci náhodné veličiny, je tedy např. stejná pro všechna normální rozdělení.
Výběrový koeficient špičatosti
Výběrový koeficient špičatosti je definován vzorcem
- \(g_2 = \frac{m_4}{m_2^2} = n\frac{\sum_{i=1}^n (x_i - \overline{x})^4}{\left(\sum_{i=1}^n (x_i - \overline{x})^2 \right)^2}\),
kde \(\overline{x}\) je výběrový průměr, \(m_2\) je výběrový rozptyl a \(m_4\) je čtvrtý výběrový centrální moment.
Tento odhad je vychýlený. Méně vychýlené odhady dostaneme, když místo výběrových centrálních momentů použijeme nevychýlené odhady centrálních momentů:[1]
\( \begin{align} G_2 = \frac{M_4}{M_2^2} &= \frac{(n-1)}{(n-2)(n-3)}\left((n+1)g_2+6\right) \\ b_2 = \frac{m_4}{M_2^2} &= \left(\frac{n-1}{n}\right)^2g_2 - 3 \end{align} \)
Pro rozptyly těchto odhadů platí \(\operatorname{var}\,b_2 < \operatorname{var}\,g_2 < \operatorname{var}\,G_2\).
Reference
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |