Vážení zákazníci a čtenáři – od 28. prosince do 2. ledna máme zavřeno.
Přejeme Vám krásné svátky a 52 týdnů pohody a štěstí v roce 2025 !

Totálně omezený metrický prostor

Z Multimediaexpo.cz

Verze z 14. 8. 2022, 14:53; Sysop (diskuse | příspěvky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Broom icon.png Tento článek potřebuje úpravy. Můžete Multimediaexpo.cz pomoci tím, že ho vylepšíte.
Jak by měly články vypadat, popisují stránky Vzhled a styl a Encyklopedický styl.
Broom icon.png

Nejobecnější definice Totálně omezeného metrického prostoru je:

podmnožina S prostoru X je totálně omezená tehdy a pouze tehdy, pokud pro danou velikost E existuje:

  • přirozené číslo n a soubor \(A_1, A_2, A_3,... A_n\) podmnožin množiny X, takový, že
    • S je podmnožinou sjednocení těchto podmnožin (jinak řečeno, tento soubor podmnožin je konečné pokrytí množiny S) a
    • každá podmnožina Ai má velikost E (nebo menší).

V matematické symbolice:

\( \forall_{E}\; \exists_{n \in \mathbb{N}}\; \exists_{ A_{1}, A_{2}, \ldots, A_{n} \subseteq X}\left ( S \subseteq \bigcup_{i=1}^{n} A_{i} \; \mbox{a zaroven}\; \forall_{i = 1, \ldots, n}\; \mathrm{velikost}(A_{i}) \leq E \right ). \! \)

Uvažujeme-li P=X, pak je prostor X totálně omezený tehdy a jen tehdy, je li P totálně omezená množina.

Porovnání s omezenou množinou

Totální omezenost je silnější vlastnost, než omezenost.

Ukážeme to na příkladu. Uvažme prostor \(M \) všech omezených posloupností reálných čísel, kde metrika přiřadí dvojici posloupností \( a_i,\, b_i \,\! \) supremum z absolutní hodnoty jejich rozdílu přes všechny položky, tedy supremum z čísel \( \left|a_1-b_1\right | ,\, \left|a_2-b_2\right | \dots \,\! \).

Uvažme množinu \(A\subseteq M \) těch posloupností, které na každé pozici mají 2 nebo -2.

Metrický prostor \(M\) není omezený (ačkoli obsahuje pouze omezené posloupnosti). Množina \(A\) je omezená, ale nikoli totálně omezená. Omezenost plyne z toho, že každý prvek \(A\) má od posloupnosti samých nul vzdálenost nejvýše 2. Kdyby byl totálně omezený, pak by pro \(\epsilon =1 \,\! \) existovala konečná \(\epsilon\)-síť \(S\), jejíž prvky můžeme označit \( S(1), S(2), \dots S(m)\,\! \), kde \(m\) je počet jejích prvků.

Pak by bylo možné definovat posloupnost \( c_n\,\! \), definovanou takto:

  • \(c_i = -2 \,\!\), pokud \(i \le m \,\!\) a \(S(i)_i\ge 0 \,\!\)
  • \(c_i = \,2 \,\!\), pokud \(i \le m \,\!\) a \(S(i)_i<0 \,\!\)
  • \(c_i = 0 \,\!\), pokud \(i>m \,\!\)

Symbol \(S(i)_i\) značí \(i\)-tý prvek \(i\)-té posloupnosti v množině \(S\). Myšlenka důkazu je v tom, že posloupnost \(c_n\) se musí "dostatečně lišit" od každé posloupnosti \( S(i)\,\! \), čehož dosáhneme tak, že pro každé \(i\) vhodnou volbou \(c_i\) zajistíme dostatečnou odlišnost od posloupnosti \(S(i)\)

Z předpokladu totální omezenosti vyplývá, že nějaký prvek \(S(j)\) má od posloupnosti \( c_n\,\! \) vzdálenost menší, než 1. Z definice \( c_n\,\! \) však plyne, že číslo \(S(j)_j\) je od čísla \(c_j\) vzdálené nejméně 2, takže i vzdálenost těchto posloupností (což je supremum vzdáleností na jednotlivých položkách) musí být nejméně 2, což je spor.

Související články