Tangentová věta
Z Multimediaexpo.cz
V trigonometrii je tangentová věta tvrzení o rovinných trojúhelnících.
Pro každý trojúhelník ABC s vnitřními úhly α, β, γ a stranami a, b, c platí:
- <math>\frac{a-b}{a+b}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{tg}\, \frac{\alpha +\beta }{2}}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{cotg}\, \frac{\gamma }{2}}</math>
- <math>\frac{b-c}{b+c}=\frac{\mathrm{tg}\, \frac{\beta -\gamma }{2}}{\mathrm{tg}\, \frac{\beta +\gamma }{2}}=\frac{\mathrm{tg}\, \frac{\beta -\gamma }{2}}{\mathrm{cotg}\, \frac{\alpha }{2}}</math>
- <math>\frac{c-a}{c+a}=\frac{\mathrm{tg}\, \frac{\gamma -\alpha }{2}}{\mathrm{tg}\, \frac{\gamma +\alpha }{2}}=\frac{\mathrm{tg}\, \frac{\gamma -\alpha }{2}}{\mathrm{cotg}\, \frac{\beta }{2}}</math>
Související články
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |