Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Gravitační potenciál
Z Multimediaexpo.cz
Gravitační potenciál je skalární fyzikální veličina, která vyčísluje potenciální energii tělesa o jednotkové hmotnosti (v jednotkách SI 1 kg) v gravitačním poli ostatních těles. Za místo s nulovým potenciálem se obvykle bere nekonečně vzdálený bod. Hodnota gravitačního potenciálu je proto záporná.
Protože gravitační potenciál vyjadřuje měrnou energii, je jeho jednotkou v soustavě SI joule na kilogram (J/kg).
Gradientem gravitačního potenciálu je gravitační zrychlení.
Obsah |
Gravitační potenciál hmotného bodu a kulově souměrného tělesa
Gravitační potenciál hmotného bodu je v newtonovské fyzice vyjádřen vzorcem
- \(\phi(r) = -\frac{GM}{r},</math>
- \(G</math> je gravitační konstanta (někdy označována také \(\kappa</math>)
- \(M</math> je hmotnost hmotného bodu
- \(r</math> je vzdálenost od hmotného bodu
Stejný vzorec platí (přesně) i pro gravitační potenciál vně sféricky symetrického tělesa (nad jeho povrchem), r pak vyjadřuje vzdálenost od středu takového tělesa. Proto lze například v astronomii nahradit ve výpočtech kosmická tělesa hmotnými body.
Gravitační potenciál sféricky symetrické kulové slupky je v dutině této slupky všude stejný. Gravitační zrychlení a tedy i tíha, způsobené touto slupkou, jsou proto uvnitř nulové. To umožňuje spočítat gravitační potenciál pod povrchem planet: pro výpočet se zahrne jen hmota planety, mající větší hloubku, než místo, pro nějž se potenciál počítá (Přesně to však platí pouze tehdy, je-li v dané hloubce hustota všude stejná).
Rychlost tělesa na kruhové dráze je v tomto potenciálu rovna Keplerovské rychlosti
\(v_k=\sqrt{\frac{GM}{r}},</math>
Úniková rychlost je
\(v_{esc}=\sqrt{\frac{2GM}{r}}=\sqrt{2} \ v_k.</math>
Plummerův potenciál
Protože se hmotný bod špatně integruje, je nutné ho šikovně "rozmazat". Jedním ze způsobů, jak to udělat, je použít Plummerovu sféru, jejíž potenciál je
\(\phi_P(r) = -\frac{GM}{\sqrt{r^2 + b^2}},</math>
kde \(b</math> je parametr.
Z Poissonovy rovnice pak odvodíme funkční závislost hustoty \(\rho</math> na poloměru \(r</math>.
\(\rho_P(r) = \frac{3M}{4\pi b^3}\left(1+\frac{r^2}{b^2}\right)^{-5/2}</math>
Přičemž tato hustota jde do nekonečna, ale nediverguje.
Kuzminův potenciál
Analogie Plummerovy sféry ve válcových souřadnicích (opět "rozmazáváme" potenciál hmotného bodu).
\(\phi_K(R, z) = -\frac{GM}{\sqrt{R^2 + \left(a + |z|\right)^2}},</math>
- \(R</math> je vzdálenost v rovině xy
- \(a</math> je parametr
- \(|z|</math> je absolutní hodnota vzdálenosti ve směru osy z.
Poissonova rovnice ve válcových souřadnicích vede na povrchovou hustotu
\(\Sigma_K(R) = \frac{aM}{2\pi \left(R^2 + a^2\right)^{3/2}}.</math>
Miyamoto−Nagai potenciál
Toto je zobecnění všech předchozích potenciálů.
\(\phi_{MN}(R,z) = -\frac{GM}{\sqrt{R^2 + \left(a + \sqrt{z^2 + b^2}\right)^2}}.</math>
Pokud
- \(a = 0</math> a \(b=0</math> ... přechází v potenciál hmotného bodu, neboť \(r = \sqrt{R^2 + z^2}</math>
- \(a=0</math> a \(b \neq 0</math> ... přechází v Plummerův potenciál
- \(a \neq 0</math> a \(b=0</math> ... přechází v Kuzminův potenciál, neboť \(|z| = \sqrt{z^2}</math>.
Tedy pokud je \(b \ll a</math>, odpovídá to přibližně rozložení potenciálu disku s centrální výdutí (např. galaxie), pokud je \(b \gg a</math>, dostáváme přibližně potenciál koule.
Z Poissonovy rovnice lze odvodit hustota
\(\rho_{MN}(R,z) = \left(\frac{b^2 M}{4\pi}\right) \frac{aR^2 + \left(a+3\sqrt{z^2 + b^2}\right)\left(a + \sqrt{z^2 + b^2}\right)^2}{\left[R^2 + \left(a+\sqrt{z^2 + b^2}\right)^2\right]^{5/2} \left(z^2 + b^2\right)^{3/2}}</math>
Související články
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |