Tětiva (geometrie)
Z Multimediaexpo.cz
Tětiva je úsečka spojující dva body na kružnici. Tětiva procházející středem je ze všech nejdelší a nazývá se průměrem kružnice.
Dělí kruh na dvě kruhové úseče. Je příslušná konvexnímu středovému úhlu \(\alpha\,\!</math>. Pro každou tětivu platí, že její osa prochází středem dané kružnice.
Délka tětivy
Délka tětivy je \(2\cdot r\cdot \sin{(\frac{\alpha}{2})}</math> kde \(r\,\!</math> je poloměr kružnice
nebo \(2\sqrt{r^2-(r-D)^2}=2\sqrt{r^2-(r^2-2rD+D^2)}=2\sqrt{2rD-D^2}=2\sqrt{D\cdot(2r-D)}</math>
Související články
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |