Tětiva (geometrie)

Z Multimediaexpo.cz

Verze z 14. 8. 2022, 14:54; Sysop (diskuse | příspěvky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Tětiva

Tětiva je úsečka spojující dva body na kružnici. Tětiva procházející středem je ze všech nejdelší a nazývá se průměrem kružnice.

Dělí kruh na dvě kruhové úseče. Je příslušná konvexnímu středovému úhlu \(\alpha\,\!\). Pro každou tětivu platí, že její osa prochází středem dané kružnice.

Délka tětivy

Délka tětivy je \(2\cdot r\cdot \sin{(\frac{\alpha}{2})}\) kde \(r\,\!\) je poloměr kružnice
nebo \(2\sqrt{r^2-(r-D)^2}=2\sqrt{r^2-(r^2-2rD+D^2)}=2\sqrt{2rD-D^2}=2\sqrt{D\cdot(2r-D)}\)

Související články