Nerovnice

Z Multimediaexpo.cz

Verze z 11. 7. 2023, 18:16; Sysop (diskuse | příspěvky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Uvažujme dvě funkce \(L(x), P(x)\), které jsou definovány na nějaké množině \(D\). Zápis

\(L(x) > P(x)\)

resp.

\(L(x) \geq P(x)\)

resp.

\(L(x) < P(x)\)

resp.

\(L(x) \le P(x)\)

se nazývá nerovnicí o jedné neznámé \(x\). Funkce \(L(x)\) se nazývá levá strana nerovnice a \(P(x)\) se nazývá pravá strana nerovnice. Vztah obou stran nerovnice (relaci) určuje znaménko nerovnosti, které se v nerovnici vyskytuje právě jednou.

Obsah

Klasifikace řešení

Řešením nerovnice je taková množina všech \(x \in D\), která splňuje výše uvedenou relaci obou stran nerovnice. V oboru reálných čísel může mít nerovnice tato řešení:

  • prázdná množina: nerovnice nemá řešení; např. \(x^2 < 0\), řešení: \(x\in\emptyset\)
  • jedna nebo více diskrétních hodnot: kořen rovnice \(L(x) = P(x)\); např. \(\cos x \ge 1\), řešení: \(x = 2 \pi k\), \(k\in\mathbb{Z}\)
  • interval: všechny typy intervalů; např. \(x^2 -1 \le 0\), řešení: \(x \in \lang -1, 1 \rang \)
  • sjednocení intervalů: např. \(4 - x^2 < 0 \), řešení: \(x \in ( -\infty, -2 ) \cup ( 2, \infty)\)

Početní postup řešení

Při hledání řešení nerovnice postupujeme obdobně jako při řešení rovnice: ekvivalentními úpravami se snažíme nerovnici převést na jednodušší tvar, z něhož jsme schopni určit řešení nerovnice.

Při řešení nerovnic se často využívá, že pro dvě čísla \(a, b\) platí, že pokud \(a b > 0\), pak je buď \(a > 0\) a \(b > 0\) nebo \(a < 0\) a \(b < 0\). Často se také využívá skutečnosti, že pro \(a > b\) platí \(\frac{1}{a} < \frac{1}{b}\).

Je třeba mít na paměti, že úpravy nerovnice mají, na rozdíl od úprav rovnic, vliv také na relaci obou stran nerovnice. Např. pokud nerovnici \(-2 x > -1\) vynásobíme \(-1\), dostaneme nerovnici \(2 x < 1\), tzn. došlo ke změně > na <.

Grafické řešení

U nerovnic se často užívá grafické řešení, neboť je názorné. Známe-li totiž kořeny rovnice \(f(x) = 0\), můžeme je využít při řešení nerovnice \(f(x) > 0\), neboť kořeny určují krajní body intervalů, které jsou řešením nerovnice. Grafické řešení pomáhá rychle určit, které z intervalů jsou řešením a které nikoli.

Rozdělení

Podobně jako u rovnic lze také nerovnice rozdělit na algebraické a nealgebraické.

Související články