Hagen Kleinert
Z Multimediaexpo.cz
Hagen Michael Kleinert (*15. června 1941, Twardogóra) je německý fyzik, profesor teoretické fyziky na FU v Berlíně. Kleinert je kromě jiného, čestným profesorem na Kyrgizijsko-Ruské Slovanské Universitě, a čestným členem Ruské akademie věd. Za svůj příspěvek ve fyzice částic a ve fyzice pevných látek mu byla roku 2008 udělena [1] cena Maxe Borna s medailí.
Kleinert je autorem mnoha vědeckých publikací (více než 370 článků) které se zabývají matematickou fyzikou, fyzikou elementárních částic, atomovou fyzikou, fyzikou pevných látek, tekutými krystaly, biomembránami, emulzemi, polymery, a teorií finančních trhů. Je také autorem několika knich z teoretické fyziky. Nejznámější z nich je učebnice - Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Market - která se od roku 1990 dočkala již čtvrté edice and obdržela velmi pozitivní kritiku[1]. Ještě jako mladý profesor navštívil Kleinert v roce 1972 Caltech kde byl silně ovlivněn významným americkým fyzikem Rychardem Feynmanem. Byla to pravděpodobně tato zkušenost která mu později pomohla úspěšně použít Feynmanův dráhový integrál k řešení vodíkového atomu[2].[3] Tento výsledek také značně rozšířil aplikační oblast Feynmanovy metody. Později Kleinert spolupracoval[4] s Feynmanem na jednom z jeho posledních článků.[5] Uvedená spolupráce vedla k rozprácování matematického postupu který umožňuje převést divergentní ("weak-coupling") mocninné řady na konvergentní ("strong-coupling") mocninné řady. Tato, tak zvaná Variační poruchová teorie je v současné době nejpřesnější teorií na výpočet kritickych exponentů[6] které jsou pozorovány v blízkosti fázových přechodů druhého řádu. Uspěšnost této metody byla experimentálně potvrzena pro supratekuté hélium v družicových experimentech.[7] V rámci kvantové teorie kvarků nalezl původ algebry Reggeho residuí[8] předpovězené N. Cabibbem, L. Horwitzem a Y. Ne'emanem(p.232 in[9]).
Společně s K. Maki objasnil structuru ikosahedrální fáze u kvasikrystalů.[10]
V roce 1982 předpověděl pro supravodiče tříkritický bod ve fázovém diagramu mezi supravodiči typu-I a typu-II.[11] Tato předpověd byla v roce 2002 nepřímo potvrzena prostřednictvím Monte Carlo simulací.[12] Zmíněná teorie je založena na nové, tak zvané, "neuspořádané" polní teorii (disorder field theory), kterou Kleinert rozpracoval ve své knize Gauge Fields in Condensed Matter (viz níže). V této teorii jsou statistické vlastnosti fluktuujících vortexů nebo lineárních defektů popsány jako elementární excitace s pomocí kvantových polí. Neuspořádaná polní teorie je duální verzí k "uspořádané" polní teorii (order field theory) navržené L.D. Landauem pro fázové přechody. Na letní škole v Erice konané v roce 1978 navrhnul existenci "zlomené" supersymetrie která by měla existovat v atomových jádrech[13], tato předpověd byla později experimentálně pozorována[14].
Jeho teorie kolektivních kvantových polí[15] a hadronizace kvarkových teorií[16] slouží dnes jako teoretické prototypy, např. v pevných látkách nebo v jaderné a částicové fyzice. V roce 1986 zavedl[17] pojem tuhosti do teorie strun (ve strunové teorii se bežně předpokládá, že struny mají jenom napětí). Tímto způsobem značně zlepšil fyzikální vlastnosti strun. Protože podobné rozšíření bylo také nezávisle navrženo ruským fyzikem A. Polyakovem, je tento výsledek znám jako Polyakovova-Kleinertova struna. Jako alternativu k strunové teorii, použil Kleinert kompletní fyzikální analogii mezi ne-Euklidovskou geometrií a geometrií krystalu s defekty. Tento krok mu umožnil navrhnout model vesmiru dnes známého jako World Crystal nebo Planck-Kleinertův krystal který má, na vzdálenostech řádu Planckovy délky, zcela odlišné fyzikální vlastnosti než strunová teorie. V tomto modelu látka vytváři defekty v prostoročase které ve svém důsledku generují křivost a všechny obvyklé efekty známé z teorie obecné relativity. Zmíněna teorie inspirovala italskou umělkyni Lauru Pesce k tvorbě skleněne sochy s názvem "world crystal" (viz též spodní levý roh této stránky).
Spolu s A. Chervyakovem zobecnil teorii distribucí z lineárních prostorů na semigrupy tím, že konsistentně zadefinoval součin distribucí (v obvyklé matematické formulaci jsou definovány jenom lineární kombinace distribucí). Toto rozšíření bylo umožněno fyzikálním požadavkem, že dráhové integrály musí být invariántní vzhledem k libovolné transformaci souřadnic.[18] Tato vlastnost je ve skutečnosti nezbýtná k důkazu ekvivalence mezi drahově-integrální formulací a Schrödingerovou teorií.
Kleinert je ve fyzice stále aktivní. V současné době (2007) je staršim členem fakulty pro Mezinárodní PhD. projekt v Relativisticke Astrofyzice (IRAP), která tvoří součást mezinárodní vědecke sítě pro astrofyziku ICRANet. Je také zakládájícím členem ESF projektu Kosmologie v Laboratoři.
Knihy
- Gauge Fields in Condensed Matter, Vol. I, " SUPERFLOW AND VORTEX LINES", pp. 1-742, Vol. II,
"Stress and Defects", pp. 743-1456, World Scientific (Singapore, 1989); Paperback ISBN 9971-5-0210-0 (také dostupné na: Vol. I a Vol. II)
- Critical Properties of φ4-Theories, World Scientific (Singapore, 2001);
Paperback ISBN 981-02-4658-7 (také dostupné na [2])
- Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets,
5. edice, World Scientific (Singapore, 2009) (také dostupné na [3])
- Multivalued Fields in in Condensed Matter, Electrodynamics, and Gravitation,
World Scientific (Singapore, 2008) (také dostupné na [4])
Externí odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |
Chybná citace Nalezena značka
<ref>
bez příslušné značky <references/>
.