Kořen (matematika)
Z Multimediaexpo.cz
Kořenem funkce f se v matematice nazývá takový prvek a z definičního oboru f, v němž f nabývá nulové hodnoty.
Přesněji kořenem je každé a splňující rovnici f(a) = 0. Pro nejběžnější případ, kdy je definiční obor f podmnožinou komplexních resp. reálných čísel, je kořen bod, v němž graf funkce f protíná komplexní rovinu resp. osu x.
Obsah |
Kořen polynomu
Polynom jedné proměnné stupně n s komplexními koeficienty chápaný jako funkce může mít nejvýše n různých komplexních kořenů. Je-li totiž a kořenem polynomu P(x), pak (x − a) dělí P(x), a tedy P(x)/(x-a) je polynom stupně n-1.
Podle základní věty algebry má každý polynom jedné proměnné stupně n s komplexními koeficienty v komplexních číslech právě n kořenů, je-li každý počítán ve své násobnosti. Uvažujeme-li polynom nad reálnými čísly, pak tato situace nemusí obecně platit - např. polynom <math>x^2+1</math> nemá v reálných číslech kořen (kořeny polynomu jsou komplexní čísla <math>\pm i</math>).
Metody výpočtu
Přímo
- Je-li <math>P(x)</math> lineární polynom (tedy <math>P(x) = ax + b</math>, kde <math>a \neq 0</math> a <math>b</math> jsou reálná nebo komplexní čísla), pak jeho kořenem je číslo <math>x_0=-\frac{b}{a}</math>
- Jde-li o kvadratický polynom (<math>P(x) = ax^2 + bx + c</math>), pak existují obecně dva kořeny <math>x_{1,2} = \frac{-b \pm\sqrt{b^2 - 4ac}}{2a}</math>.
- Pro výpočet kořenů kubického polynomu existují např. Cardanovy vzorce.
Aproximací
Najdeme-li dva body <math>x_1</math> a <math>x_2</math>, pro které platí <math>\sgn(P(x_1)) = -\sgn(P(x_2))</math> kde <math>\sgn</math> značí znaménkovou funkci signum (jinak řečeno <math>P(x_1)P(x_2)<0</math>), pak existuje alespoň jeden kořen v intervalu <math>(x_1,x_2)</math> (viz Bolzanova věta). Tento kořen lze najít metodou půlení intervalů nebo metodou tečen
Příklady
- Kořenem funkce (polynomu) <math>f(x) = x^2 + 6x + 9</math> je číslo −3, protože f(-3) = 0.
Jiné kořeny tato funkce nemá – to se zjistí snadno rozkladem na <math>(x + 3)^2</math>. - Funkce <math>f(x) = e^x</math> (viz Eulerovo číslo) nemá v reálných ani komplexních číslech kořen.
- Funkce <math>f(x) = sin (x)</math> (viz sinus) má nekonečně mnoho kořenů, a to právě čísla tvaru kπ, kde π je Ludolfovo číslo a k libovolné celé číslo.
Související články
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |