Predátor
Z Multimediaexpo.cz
Predátor (též dravec) je živočich, který loví živé živočichy a živí se jimi. Predátor v ekologii je brán buď v úzkém slova smyslu jako vrcholný článek pastevně-kořistnického potravního řetězce, nebo v širokém slova smyslu jako kterýkoliv živočich, který při konzumaci vyřadí celého jedince kořisti z populace. Příkladem prvního typu je např. jaguár a kosatka, příkladem druhého typu jsou navíc např. perloočka, mravkolev, ale i kur domácí (živí se semeny, která požírá celá a tím vyřazuje potenciálního budoucího jedince z populace). Požíraní jedinci se nazývají kořist.
Matematické modely predátor-kořist
Závislost množství kořisti na množství predátora lze ve zkratce vyjádřit následujícím způsobem: Čím víc přibývá kořisti, tím víc s jistým zpožděním začne přibývat predátor. Větší množství predátora zvýší tlak na kořist a té tak začne ubývat. Posléze s klesajícím množstvím kořisti začne klesat i množství predátorů, kterým ubývá potrava. S ubývajícím množství predátorů se pokles kořisti zastaví a její množství začne opět stoupat. Klasické oscilace predátora a kořisti byly v přírodě popsány především v případech, kdy predátor má jen jednu převažující kořist: tedy především vlk + zajíc bělák a liška polární + lumík v polárních oblastech. Délka oscilace kolísá mezi 6 a 10 lety podle podmínek prostředí. Obecný matematický model:
- dx/dt = x * f(x) - g(x,y)*y
- dy/dt = h(x,y)*y - d*y
Vysvětlivky:
- x - množství kořisti
- y - množství predátora
- f(x) - dynamika růstu populace kořisti (viz populační dynamika) bez přítomnosti dravce
- g(x,y) - funkcionální odezva
- h(x,y) - numerická odezva, většinou k-násobek funkcionální odezvy (vyjadřuje účinnost přeměny biomasy kořisti na biomasu predátora)
- -d*y - exponenciální vymírání populace dravce (dělo by se, kdyby nebyla přítomna kořist - předchozí člen by byl nulový)
Funkcionální odezva g(x,y) - závislost množství sežraných jedinců na nabídce kořisti x:
- Lotka-Volterovský vztah - lineární závislost g(x,y) = ax, čím víc kořisti, tím víc je jí sežráno (bez omezení) - v praxi neexistuje, jen idealizovaný vztah
- Holing I - upravený Lotka-Volterovský vztah s maximálním limitem, tj. lineární vztah až do míry maximálního nasycení g(x,y) = ax pro ax < S, g(x,y) = S pro ax > S - funguje např. u filtátorů planktonu
- Holing II - čím víc je predátor nasycen, tím méně je ochoten hledat svou kořist, funkce roste limitně k míře maximálního nasycení, tj. \(g(x,y) = \frac{aSx}{ax + 1}\) nebo \(g(x,y) = S*(1-e^{-ax})\) - funguje např. u bezobratlých
- Holing III - typický pro rozhodování se mezi dvěma typy kořisti, hojnější kořist je výrazně preferována (učení se jejímu lovu/sběru), tj. \(g(x,y) = \frac{aSx^2}{ax^2 + 1}\) nebo \(g(x,y) = S*(1-e^{-ax^2})\) - funguje např. u některých ptáků a savců
Souvisejícími pojmy
- Herbivor: Býložravec. Živí se pouze částmi zelených rostlin, které tak nevyřazuje z populace, neboť tyto zelené rostliny jsou na požírání často adaptovány.
- Parazit: Živočich, popř. rostlina nebo houba, která v dospělosti nebo v některém ze svých vývojových stadiích využívá těla jiného živočicha (popř. i rostliny)
- Parazitoid: Živočich, který ve svém vývojovém stadiu využívá těla jiného živočicha, toto larvální stadium ho během svého života ovšem nakonec zkonzumuje. Někdy počítáno jen za speciální případ parazita.
- kořist - individuum (druh) konzumovaný dravcem.
- Dravec – kořist – model vzájemné potřebnosti dravce a kořisti
- Efekt červené královny
|
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |