Racionální funkce
Z Multimediaexpo.cz
Racionální funkce je funkce ve tvaru podílu dvou mnohočlenů:
- \(f(x)= \frac{P_m(x)}{Q_n(x)} = \frac{a_m x^m+a_{m-1} x^{m-1}+\dotsb +a_1x+a_0}{b_n x^n+b_{n-1} x^{n-1}+\dotsb +b_1x+b_0}\),
kde \(Q_n(x)\) není nulový mnohočlen.
Je-li \(Q_n(x)\) konstantou, je racionální funkce ve funkcí polynomickou, pokud racionální funkci nelze vyjádřit ve tvaru s konstantním jmenovatelem, jde o racionální lomenou funkci.
Racionální funkci je obecně možné rozložit na součet polynomu a ryze racionální lomené funkce (ve které je stupeň polynomu \(P_m(x)\) menší než stupeň polynomu \(Q_n(x)\)). Důležitá je vlastnost, že ryze racionální lomenou funkci lze vyjádřit jako součet parciálních zlomků poměrně jednoduchého tvaru, což například usnadňuje její integraci.
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |