V encyklopedii Allmultimedia.cz byl aktivován špičkový grafický skin Foreground.
Foreground plně podporuje – RWD, HTML 5.0, Super Galerii a YouTube 2.0 !

Tutteova věta

Z Multimediaexpo.cz

Tutteho věta v matematické teorii grafů charakterizuje grafy s perfektním párováním. Je pojmenována po Williamu Thomasovi Tutteovi. Jedná se o zobecnění Hallovy věty.

Znění

Graf \(G= \left( V, E \right)\)perfektní párování právě tehdy, když pro každou podmnožinu vrcholů \(U \subseteq V\) platí, že počet komponent souvislosti s lichým počtem vrcholů v indukovaném podgrafu \(G'= \left( V \setminus U, E \right) \) je menší nebo roven kardinalitě \(U\).

Důkaz

Implikace "doprava"

Vyberme si nějakou podmnožinu vrcholů \(U\) a odstraňme ji z \(G\) spolu se všemi hranami, které mají alespoň jeden konec v \(U\). Nyní se podívejme na všechny vzniklé komponenty souvislosti s lichým počtem vrcholů. Jelikož před odebráním \(U\) měl \(G\) perfektní párování, musela z každé této komponenty vést alespoň jedna hrana k nějakému vrcholu v \(U\) (zřejmé z definice perfektního párování).
A protože v párování musíme propojit vždy právě dva vrcholy, musí \(U\) obsahovat alespoň tolik vrcholů, kolik existuje lichých komponent (všimněte si, že počítáme jenom s hranami obsaženými v nějakém perfektním párování - jiné nás nezajímají).
Čímž máme první část důkazu za sebou, neboť pro \(K\) – počet lichých komponent podgrafu \(G' \left( V \setminus U, E \right)\) vztah \(K \le |U|\) zřejmě musí platit.

Externí odkazy