Afinní prostor
Z Multimediaexpo.cz
Afinní prostor je v geometrii prostor, na kterém je definováno sčítání bodů a vektorů.[1] Slouží jako model pro afinní geometrii.[2] Jedná se o zobecnění eukleidovského prostoru.
Obsah |
Definice
Afinní prostor je množina \(A\) spolu se zobrazením
- \(+\colon\,\, V \times A\to A,\quad (v, a) \mapsto v + a\)
kde \(V\) je vektorový prostor, které má následující vlastnosti:[3][4]
- 1. Pro každé a v A platí \(0+a = a\quad\), kde \(0\in V\) je nulový vektor
- 2. Pro každé v, w ve V a a v A platí \(v+(w+a) = (v+w)+a\,\),
- 3. Pro každé a v A, zobrazení \(V \to A,\quad v \mapsto v + a\quad\) je bijekce.
Volbou počátku \(a\in A\) je možné identifikovat A s vektorovým prostorem V zobrazením \(a+v\mapsto v\). Naopak, každý vektorový prostor V je afinní prostor nad sebou samým.
Afinní geometrie
Afinní prostor je úzce spojen s afinní geometrií.[2] Na afinním prostoru jsou definovány úsečky, přímky, poměry velikostí úseček, nikoli však vzdálenosti bodů nebo úhly vektorů.
Literatura
Česká
- BICAN, Ladislav. Lineární algebra a geometrie. [s.l.] : Academia, 2002. ISBN 80-200-0843-8. Kapitola Afinní prostor. (česky)
Reference
- ↑ REID, Miles A.; SZENDRŐI, Bala. Geometry and topology. [s.l.] : Cambridge University Press, 2005. 196 s. ISBN 9780521848893. S. 63, 64. (anglicky)
- ↑ 2,0 2,1 LEUNG, Kam-tim. Linear algebra and geometry. [s.l.] : Hong Kong University Press, 1974. 309 s. ISBN 9780856561115. Kapitola 3.9, s. 96. (anglicky)
- ↑ TARRIDA, Agustí Reventós. Affine Maps, Euclidean Motions and Quadrics. [s.l.] : Springer, 2011. 458 s. Definice 1.1. ISBN 9780857297099. S. 1. (anglicky)
- ↑ PRASOLOV, Viktor Vasilevich; TIKHOMIROV, Vladimir Mikhailovich. Geometry. [s.l.] : AMS, 2001. 257 s. Definice 5. ISBN 9780821820384. S. 20. (anglicky)
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |