V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.

Eulerova konstanta

Z Multimediaexpo.cz

Broom icon.png Tento článek potřebuje úpravy. Můžete Multimediaexpo.cz pomoci tím, že ho vylepšíte.
Jak by měly články vypadat, popisují stránky Vzhled a styl a Encyklopedický styl.
Broom icon.png


Možná hledáte: Eulerovo číslo

Eulerova konstanta nebo též Eulerova–Mascheroniho konstanta je matematická konstanta používaná v teorii čísel a v analýze. O této konstantě není známo, zda je racionální či iracionální.[1]

Eulerova konstanta je přibližně rovna: 0,57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 … .[2]

Obsah

Definice

Nejsnadneji lze tuto konstantu definovat jako následující limitu:

\(\gamma = \lim_{n \to \infty} \left(1+\frac{1}{2}+\frac{1}{3}+\dots + \frac{1}{n}-\ln n \right)\)

Je obecně známo, že harmonická řada vyskytující se v limitě je řadou divergentní, má tedy nekonečný součet. To že výše uvedená limita je vlastní označuje skutečnost, že pro velká \(n\) můžeme součet harmonické řady aproximovat přirozeným logaritmem, jenž je v nekonečnu taktéž nekonečný.

Geometrická představa

Obsah modré plochy se rovná Eulerově konstantě

Hodnotu konstanty \(\gamma\) si můžeme představit i geometricky. Zobrazíme-li grafy funkci

\(f(x)=\frac{1}{\lfloor x \rfloor},\)

\(g(x)=\frac{1}{x},\)

kde \(\lfloor x \rfloor\) značí (dolní) celou část čísla \(x\), pak obsah plochy mezi těmito dvěma grafy pro x od 1 do nekonečna je právě roven Eulerově konstantě \(\gamma\):

\(\gamma= \int_1^\infty \left( \frac{1}{\lfloor x \rfloor} - \frac{1}{x}\right) dx.\)

Reference

  1. Eulerova konstanta v encyklopedii MathWorld (anglicky)
  2. Eulerova konstanta na OEIS

Externí odkazy