Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Eulerova konstanta
Z Multimediaexpo.cz
- Možná hledáte: Eulerovo číslo
Eulerova konstanta nebo též Eulerova–Mascheroniho konstanta je matematická konstanta používaná v teorii čísel a v analýze. O této konstantě není známo, zda je racionální či iracionální.[1]
Eulerova konstanta je přibližně rovna: 0,57721 56649 01532 86060 65120 90082 40243 10421 59335 93992 … .[2]
Obsah |
Definice
Nejsnadneji lze tuto konstantu definovat jako následující limitu:
\(\gamma = \lim_{n \to \infty} \left(1+\frac{1}{2}+\frac{1}{3}+\dots + \frac{1}{n}-\ln n \right)\)
Je obecně známo, že harmonická řada vyskytující se v limitě je řadou divergentní, má tedy nekonečný součet. To že výše uvedená limita je vlastní označuje skutečnost, že pro velká \(n\) můžeme součet harmonické řady aproximovat přirozeným logaritmem, jenž je v nekonečnu taktéž nekonečný.
Geometrická představa
Hodnotu konstanty \(\gamma\) si můžeme představit i geometricky. Zobrazíme-li grafy funkci
\(f(x)=\frac{1}{\lfloor x \rfloor},\)
\(g(x)=\frac{1}{x},\)
kde \(\lfloor x \rfloor\) značí (dolní) celou část čísla \(x\), pak obsah plochy mezi těmito dvěma grafy pro x od 1 do nekonečna je právě roven Eulerově konstantě \(\gamma\):
\(\gamma= \int_1^\infty \left( \frac{1}{\lfloor x \rfloor} - \frac{1}{x}\right) dx.\)
Reference
Externí odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |