dokončit zcela nový balíček 1 000 000 fotografií na plných 100 procent !
Nedostižná hranice 4 000 000 fotografií se února 2026 už nedožije...

Integrální rovnice
Z Multimediaexpo.cz
Integrální rovnice je v matematice taková rovnice, v níž se neznámá funkce nachází pod integrálem. Integrální rovnice úzce souvisejí s diferenciálními rovnicemi a některé problémy mohou být formulovány oběma způsoby (např. Maxwellovy rovnice).
Za zakladatele teorie integrálních rovnic se považuje Erik Ivar Fredholm, později k ní významně přispěl italský matematik Vito Volterra (1860–1940).
Obsah[skrýt] |
Klasifikace integrálních rovnic
Integrální rovnice lze rozdělit na dvě základní třídy: Fredholmovy integrální rovnice a Volterrovy integrální rovnice. U Fredholmových rovnic má interval integrace konstantní hranice, u Volterrových rovnic je pak jedna z hranic funkcí proměnné x.
Další dělení je na rovnice prvního a druhého druhu. V rovnicích prvního druhu se neznámá funkce nachází jen pod integrálem, v rovnicích druhého druhu se nachází pod integrálem i mimo integrál.
Fredholmovy rovnice prvního druhu
Nejzákladnějším typem integrálních rovnic jsou Fredholmovy rovnice prvního druhu. Jsou to integrální rovnice tvaru
kde
Fredholmovy rovnice druhého druhu
Fredholmovy rovnice druhého druhu jsou rovnice s konstantním rozsahem integrace a s neznámou funkcí nacházející se jak v integrandu, tak i mimo něj. Jsou to integrální rovnice tvaru
Číslo
Volterrovy rovnice prvního druhu
Volterrovy rovnice prvního druhu jsou zobecněním Fredholmových rovnic prvního druhu, ve kterém je jedna z hranic integračního rozsahu funkcí proměnné x. Volterrovy rovnice prvního druhu mají tvar:
Volterrovy rovnice druhého druhu
Volterrovy rovnice druhého druhu jsou zobecněním Fredholmových rovnic druhého druhu. Jedna z hranic integračního rozsahu je funkcí proměnné x. Rovnice tohoto typu mají tvar:
Externí odkazy
[zobrazit] Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|