Laurentova řada
Z Multimediaexpo.cz
Laurentova řada je řada ve tvaru \(\sum_{n=-\infty}^\infty a_n (z - z_0)^n \), kde \((a_n)_{n=-\infty}^\infty\) je posloupnost komplexních čísel a \( z_0 \in C \).
Definice
Řada tvaru
\(\sum_{n=-\infty}^\infty a_n (z - z_0)^n = \cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} + a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \cdots \)
kde \((a_n)_{n=-\infty}^\infty\) je posloupnost komplexních čísel a \( z_0 \in C \) se nazývá Laurentova řada se středem v bodě \( z_0 \) a koeficienty \((a_n)_{n=-\infty}^\infty\).
Řada \(\sum_{n=0}^\infty a_n (z - z_0)^n \) je pak regulární částí Laurentovy řady a \(\sum_{n=-\infty}^{-1} a_n (z - z_0)^n \) je pak hlavní část Laurentovy řady.
Konvergence
Laurentova řada konverguje v daném bodě \( z_0 \) konverguje-li současně v tomto bodě její hlavní i regulární část.
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |