Sylvestrova posloupnost
Z Multimediaexpo.cz
Sylvestrova posloupnost, pojmenovaná po anglickém matematikovi Jamesovi Sylvesterovi (1814–1897), je matematická posloupnost celých čísel definovaná tak, že každý prvek posloupnosti je součinem předcházejících prvků plus jedna.
Formálně se definuje jako
- \(s_n = 1 + \prod_{i = 0}^{n - 1} s_i,\)
přičemž nultý člen posloupnosti je 2, jelikož prázdný součin má hodnotu 1. Alternativně může být posloupnost definována i pomocí rekurentního vztahu
- \(\displaystyle s_i = s_{i-1}(s_{i-1}-1)+1,\) kde s0 = 2.
Externí odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |