Zrychlení

Z Multimediaexpo.cz

Zrychlení je charakteristika pohybu, která popisuje, jakým způsobem se mění rychlost tělesa (hmotného bodu) v čase.

Zrychlení je vektorová fyzikální veličina, neboť udává jak velikost změny, tak i její směr.

Lze určit okamžité zrychlení a průměrné zrychlení.

V jednorozměrném případě lze zrychlení určit jako derivaci rychlosti podle času.

Pokud není uvedeno jinak, označuje zrychlení časovou změnu rychlosti mechanického pohybu. Obecněji se zrychlení používá pro označení změny rychlosti jakéhokoliv pohybu (např. změna rychlosti chemické reakce, změna rychlosti společenských změn apod.).

Záporné zrychlení bývá označováno jako zpomalení.


Obsah

Příklad

Mějme dva běžce závodící na stejné trati, tedy se pohybují po stejné trajektorii. Tito dva běžci nechť vyběhnou ve stejný okamžik a do cíle dorazí také současně. Lze tedy říci, že průměrná rychlost obou běžců byla stejná. Pokud však v komentáři k závodu uslyšíme, že v půli tratě vedl jeden z běžců, pak pohyby obou závodníků určitě nebyly stejné. První závodník běžel první polovinu tratě rychleji než druhý (a byl tedy v polovině dráhy dříve), zatímco druhý závodník běžel rychleji ve druhé polovině tratě a to tak, že do cíle dorazili současně. V polovině tratě tedy došlo k nějaké změně. Druhý závodník totiž zrychlil, tj. změnil svou rychlost. Charakteristikou této změny je právě zrychlení.

Značení

  • Značka: \(\mathbf{a}\), popř. \(a\) pro velikost zrychlení (z anglického acceleration)
  • V základních jednotkách SI: metr sekunda na mínus druhou, m.s-2, běžně používaná je i matematická úprava metr lomeno sekunda na druhou m/s2.

Okamžité zrychlení

Okamžité zrychlení je zrychlení v daném časovém okamžiku. Jelikož je časový okamžik nekonečně krátký, vypočte se okamžité zrychlení jako první derivace rychlosti podle času, tzn.

\(\mathbf{a} = \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t}\).

Průměrné zrychlení

Průměrné zrychlení je zrychlení, která se určuje jako podíle změny rychlosti \(\Delta\mathbf{v}\) za daný časový interval \(\Delta t\) a tohoto časového intervalu, tzn.

\(\mathbf{a} = \frac{\Delta\mathbf{v}}{\Delta t}\)

Tečné a normálové zrychlení

Při křivočarém pohybu je výhodné rozložit zrychlení do směru pohybu, tzn. do směru tečny k trajektorii, a do směru kolmého k pohybu, tzn. do směru normály k trajektorii. Hovoříme pak o tečném zrychlení a normálovém (také dostředivém) zrychlení.

Tečné zrychlení \(\mathbf{a}_t\) a normálové zrychlení \(\mathbf{a}_n\) představují rozklad vektoru zrychlení \(\mathbf{a}\). Platí tedy vztah

\(\mathbf{a} = \mathbf{a}_t + \mathbf{a}_n\)

Pro velikost zrychlení pak platí

\(a = \sqrt{a_t^2 + a_n^2}\)

V případě \(a_t=0\) probíhá pohyb po křivce rovnoměrným pohybem. Příkladem takového pohybu může být rovnoměrný pohyb po kružnici nebo rovnoměrný přímočarý pohyb.

V případě \(a_n=0\) probíhá pohyb po křivce se zrychlením \(a=a_t\). Pohyb v takovém případě není vychylován z tečného směru, tedy ze směru přímky, a jedná se tedy o přímočarý (i když obecně nerovnoměrný) pohyb. Jedná se také o jediný případ, kdy má zrychlení stejný směr jako rychlost.

Příklady zrychlení

Související články