Cauchyovská posloupnost

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Nový článek)
m (Nahrazení textu „<math>“ textem „<big>\(“)
Řádka 3: Řádka 3:
== Definice ==
== Definice ==
-
V metrickém prostoru ''M'' s metrikou ''d'' je posloupnost <math>( x_1, x_2, \ldots )</math> '''cauchyovská''', pokud pro ni platí tzv. Bolzanova-Cauchyho podmínka:
+
V metrickém prostoru ''M'' s metrikou ''d'' je posloupnost <big>\(( x_1, x_2, \ldots )</math> '''cauchyovská''', pokud pro ni platí tzv. Bolzanova-Cauchyho podmínka:
-
<math>\forall \varepsilon > 0\; \exists n_0 \in \mathbb{N}\; \forall m, n \ge n_0: d(x_m, x_n) < \varepsilon</math>
+
<big>\(\forall \varepsilon > 0\; \exists n_0 \in \mathbb{N}\; \forall m, n \ge n_0: d(x_m, x_n) < \varepsilon</math>
== Příklady ==
== Příklady ==
-
* [[Harmonická posloupnost]] <math>\frac 1 n</math> je cauchyovská.
+
* [[Harmonická posloupnost]] <big>\(\frac 1 n</math> je cauchyovská.
-
* Každá konvergentní posloupnost v metrickém prostoru je cauchyovská, tzn. Bolzanova-Cauchyho podmínka je nutná podmínka konvergence, nikoli však obecně postačující (viz příklad racionálních čísel). Metrický prostor <math>\mathbb{A}</math>, v kterém má každá cauchyovská posloupnost limitu, která náleží do tohoto metrického prostoru <math>\mathbb{A}</math>, se nazývá [[úplný metrický prostor]].
+
* Každá konvergentní posloupnost v metrickém prostoru je cauchyovská, tzn. Bolzanova-Cauchyho podmínka je nutná podmínka konvergence, nikoli však obecně postačující (viz příklad racionálních čísel). Metrický prostor <big>\(\mathbb{A}</math>, v kterém má každá cauchyovská posloupnost limitu, která náleží do tohoto metrického prostoru <big>\(\mathbb{A}</math>, se nazývá [[úplný metrický prostor]].
-
* Posloupnost [[racionální číslo|racionálních čísel]] <math>(1 + 1/n)^n</math> je cauchyovská, ale její limita je [[Eulerovo číslo]], což je [[iracionální číslo|číslo iracionální]]. Prostor racionálních čísel (s eukleidovskou metrikou) proto není úplný metrický prostor.
+
* Posloupnost [[racionální číslo|racionálních čísel]] <big>\((1 + 1/n)^n</math> je cauchyovská, ale její limita je [[Eulerovo číslo]], což je [[iracionální číslo|číslo iracionální]]. Prostor racionálních čísel (s eukleidovskou metrikou) proto není úplný metrický prostor.
* Každá cauchyovská posloupnost je omezená. Z [[Bolzano-Weierstrassova věta|Bolzano-Weierstrassovy věty]] pak plyne, že každá cauchyovská posloupnost [[reálné číslo|reálných čísel]] je už konvergentní, tzn. že prostor reálných čísel je úplný.
* Každá cauchyovská posloupnost je omezená. Z [[Bolzano-Weierstrassova věta|Bolzano-Weierstrassovy věty]] pak plyne, že každá cauchyovská posloupnost [[reálné číslo|reálných čísel]] je už konvergentní, tzn. že prostor reálných čísel je úplný.

Verze z 14. 8. 2022, 14:48

Cauchyovská posloupnost (také bolzanovská posloupnost) je taková posloupnost prvků metrického prostoru, jejíž členy se k sobě blíží libovolně blízko. Každá konvergentní posloupnost je nutně cauchyovská. Pomocí cauchyovské posloupnosti se definuje úplný metrický prostor. V něm cauchyovské posloupnosti a konvergentní posloupnosti splývají. To pak přináší výhodu při určování, zda posloupnost má limitu, neboť stačí ověřit, zda je cauchyovská, bez nutnosti samotnou limitu zjišťovat, jako např. u Banachovy věty o pevném bodě.

Definice

V metrickém prostoru M s metrikou d je posloupnost \(( x_1, x_2, \ldots )</math> cauchyovská, pokud pro ni platí tzv. Bolzanova-Cauchyho podmínka:

\(\forall \varepsilon > 0\; \exists n_0 \in \mathbb{N}\; \forall m, n \ge n_0: d(x_m, x_n) < \varepsilon</math>

Příklady

  • Harmonická posloupnost \(\frac 1 n</math> je cauchyovská.
  • Každá konvergentní posloupnost v metrickém prostoru je cauchyovská, tzn. Bolzanova-Cauchyho podmínka je nutná podmínka konvergence, nikoli však obecně postačující (viz příklad racionálních čísel). Metrický prostor \(\mathbb{A}</math>, v kterém má každá cauchyovská posloupnost limitu, která náleží do tohoto metrického prostoru \(\mathbb{A}</math>, se nazývá úplný metrický prostor.
  • Posloupnost racionálních čísel \((1 + 1/n)^n</math> je cauchyovská, ale její limita je Eulerovo číslo, což je číslo iracionální. Prostor racionálních čísel (s eukleidovskou metrikou) proto není úplný metrický prostor.
  • Každá cauchyovská posloupnost je omezená. Z Bolzano-Weierstrassovy věty pak plyne, že každá cauchyovská posloupnost reálných čísel je už konvergentní, tzn. že prostor reálných čísel je úplný.