Trigonometrie

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (1 revizi)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
(Nejsou zobrazeny 2 mezilehlé verze.)
Řádka 1: Řádka 1:
-
{{Wikipedia-cs|Trigonometrie|700}}
+
'''Trigonometrie''' (z řeckého ''trigónon'', trojúhelník a ''metrein'', měřit) je oblast [[goniometrie]] zabývající se užitím [[goniometrická funkce|goniometrických funkcí]] při řešení úloh o [[trojúhelník|trojúhelnících]]. Trigonometrie se dělí na [[trigonometrie rovinná|trigonometrii rovinnou]] a na [[trigonometrie sférická|trigonometrii sférickou]] (trigonometrie útvarů na kulové ploše). Trigonometrie má základní význam při [[triangulace|triangulaci]], která se používá k měření vzdáleností mezi dvěma [[hvězda]]mi, v [[geodézie|geodézii]] k měření vzdálenosti dvou bodů a v [[satelitní navigační systém|satelitních navigačních systémech]]. V angličtině se trigonometrie a [[goniometrie]] souhrnně označuje jako ''trigonometry''.
 +
== Historie trigonometrie ==
 +
[[Soubor:Leonhard_Euler_by_Handmann.png|thumb|200px|Leonhard Euler, zakladatel moderní trigonometrie]]
 +
 +
První poznatky z trigonometrie lze prokázat již u [[Egypt|Egypťanů]]. Podobné znalosti měli také Babyloňané a Chaldejci, od kterých převzali [[Řekové]] dnešní dělení [[úhel|plného úhlu]] na 360° a [[Stupeň (úhel)|stupně]] na 60 [[minuta|minut]]. První práce o trigonometrii souvisely s problémem určení délky [[Tětiva (geometrie)|tětivy]] vzhledem k velikosti [[úhel|úhlu]]. První tabulky délek [[Tětiva (geometrie)|tětiv]] pocházejí od řeckého matematika Hipparcha z&nbsp;roku 140 př.&nbsp;n.&nbsp;l., další tabulky sepsal zhruba o 40 let později Melenaus, řecký matematik žijící v [[Řím]]ě. Práce starořeckých vědců vyvrcholila Ptolemaiovým dílem ''Megale syntaxis (Velká soustava)'', v níž Klaudios&nbsp;Ptolemaios vypočítal tabulku délek tětiv [[kružnice]], jež měla poloměr až 60 [[délková jednotka|délkových jednotek]] a kde [[úhel|středový úhel]], k němuž se délky vztahovaly, postupoval po 0,5°.
 +
 +
Od 5. století začali pak trigonometrii budovat [[Indové]], od kterých pochází dnešní název pro [[sinus]], a po nich vědci Střední Asie a Arabové. Z Indů se trigonometrii nejvíce věnoval Brahmagupta (7.&nbsp;století), z vědců [[střední východ|Střední Asie]] a [[Arabský poloostrov|Arábie]] je pak třeba vzpomenout [[Sýrie|syrského]] [[Astronomie|astronoma]] al-Battáního.
 +
 +
[[Evropa]] se s trigonometrií seznámila díky západním [[Arabové|Arabům]]. K rozvoji trigonometrie významně přispěl [[Polsko|polský]] [[astronomie|astronom]] Mikuláš Koperník, stejně tak i [[Francie|francouzský]] [[matematika|matematik]] François Viète, který představil [[kosinová věta|kosinovou větu]] v trigonometrické podobě. Dnešní podobu trigonometrie jakožto vědu o [[goniometrická funkce|goniometrických funkcích]] ve svém díle ''Introductio in analysin infinitorum (Úvod do analýzy)'' vytvořil Leonhard Euler (1707–1783). Poprvé zkoumal hodnoty sin ''x'', cos ''x'' jako [[číslo|čísla]], nikoli jako [[úsečka|úsečky]], a jako [[hodnota|hodnoty]] [[proměnná|proměnné]] připouštěl kladná i záporná čísla.
 +
 +
== Trigonometrické věty a vzorce ==
 +
* [[Sinová věta]]: Pro každý [[trojúhelník]] ABC s&nbsp;vnitřními [[úhel|úhly]] α, β, γ a stranami ''a'', ''b'', ''c'' platí:
 +
: <big>\(\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}\)</big>.
 +
 +
* [[Kosinová věta]]: Pro každý [[trojúhelník]] ABC s&nbsp;vnitřními [[úhel|úhly]] α, β, γ a stranami ''a'', ''b'', ''c'' platí:
 +
: <big>\(a^2 = b^2 + c^2 - 2 b c \cdot \cos \alpha\)</big>
 +
 +
* [[Tangentová věta]]: Pro každý [[trojúhelník]] ABC s&nbsp;vnitřními [[úhel|úhly]] α, β, γ a stranami ''a'', ''b'', ''c'' platí:
 +
: <big>\(\frac{a-b}{a+b}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{tg}\, \frac{\alpha +\beta }{2}}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{cotg}\, \frac{\gamma }{2}}\)</big>
 +
 +
* Pro obsah každého [[trojúhelník]]u ABC s vnitřními úhly α, β, γ a se stranami ''a'', ''b'', ''c'' platí:
 +
: <big>\(S=\frac{1}{2}ab\,\sin(\gamma)=\frac{1}{2}ac\,\sin(\beta)=\frac{1}{2}bc\,\sin(\alpha)\)</big>
 +
 +
* Pro poloměr ''r'' [[kružnice opsaná|kružnice opsané]] [[trojúhelník]]u ABC platí:
 +
: <big>\(r=\frac{a}{2\sin \alpha}=\frac{b}{2\sin \beta}=\frac{c}{2\sin \gamma}\)</big>
 +
 +
== Související články ==
 +
* [[Goniometrie]]
 +
* [[Goniometrická funkce]]
 +
 +
== Externí odkazy ==
 +
* [http://www.karlin.mff.cuni.cz/~robova/stranky/motyckova/Stranky_s_aplety/index.html Učebnice goniometrie a trigonometrie]
 +
* [http://vedci.wz.cz/historie/16.htm Historie trigonometrie]
 +
* [http://mat.fsv.cvut.cz/lakoma/Vyuka/Sferickatrigonometrie03.doc Sférická trigonometrie v kartografii a astronomii] - ve formátu DOC (244 kB)
 +
 +
 +
{{Commonscat|Trigonometry}}{{Článek z Wikipedie}}
[[Kategorie:Goniometrie]]
[[Kategorie:Goniometrie]]
[[Kategorie:Trojúhelník]]
[[Kategorie:Trojúhelník]]

Aktuální verze z 14. 8. 2022, 14:54

Trigonometrie (z řeckého trigónon, trojúhelník a metrein, měřit) je oblast goniometrie zabývající se užitím goniometrických funkcí při řešení úloh o trojúhelnících. Trigonometrie se dělí na trigonometrii rovinnou a na trigonometrii sférickou (trigonometrie útvarů na kulové ploše). Trigonometrie má základní význam při triangulaci, která se používá k měření vzdáleností mezi dvěma hvězdami, v geodézii k měření vzdálenosti dvou bodů a v satelitních navigačních systémech. V angličtině se trigonometrie a goniometrie souhrnně označuje jako trigonometry.

Obsah

Historie trigonometrie

Leonhard Euler, zakladatel moderní trigonometrie

První poznatky z trigonometrie lze prokázat již u Egypťanů. Podobné znalosti měli také Babyloňané a Chaldejci, od kterých převzali Řekové dnešní dělení plného úhlu na 360° a stupně na 60 minut. První práce o trigonometrii souvisely s problémem určení délky tětivy vzhledem k velikosti úhlu. První tabulky délek tětiv pocházejí od řeckého matematika Hipparcha z roku 140 př. n. l., další tabulky sepsal zhruba o 40 let později Melenaus, řecký matematik žijící v Římě. Práce starořeckých vědců vyvrcholila Ptolemaiovým dílem Megale syntaxis (Velká soustava), v níž Klaudios Ptolemaios vypočítal tabulku délek tětiv kružnice, jež měla poloměr až 60 délkových jednotek a kde středový úhel, k němuž se délky vztahovaly, postupoval po 0,5°.

Od 5. století začali pak trigonometrii budovat Indové, od kterých pochází dnešní název pro sinus, a po nich vědci Střední Asie a Arabové. Z Indů se trigonometrii nejvíce věnoval Brahmagupta (7. století), z vědců Střední Asie a Arábie je pak třeba vzpomenout syrského astronoma al-Battáního.

Evropa se s trigonometrií seznámila díky západním Arabům. K rozvoji trigonometrie významně přispěl polský astronom Mikuláš Koperník, stejně tak i francouzský matematik François Viète, který představil kosinovou větu v trigonometrické podobě. Dnešní podobu trigonometrie jakožto vědu o goniometrických funkcích ve svém díle Introductio in analysin infinitorum (Úvod do analýzy) vytvořil Leonhard Euler (1707–1783). Poprvé zkoumal hodnoty sin x, cos x jako čísla, nikoli jako úsečky, a jako hodnoty proměnné připouštěl kladná i záporná čísla.

Trigonometrické věty a vzorce

\(\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}\).
\(a^2 = b^2 + c^2 - 2 b c \cdot \cos \alpha\)
\(\frac{a-b}{a+b}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{tg}\, \frac{\alpha +\beta }{2}}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{cotg}\, \frac{\gamma }{2}}\)
  • Pro obsah každého trojúhelníku ABC s vnitřními úhly α, β, γ a se stranami a, b, c platí:
\(S=\frac{1}{2}ab\,\sin(\gamma)=\frac{1}{2}ac\,\sin(\beta)=\frac{1}{2}bc\,\sin(\alpha)\)
\(r=\frac{a}{2\sin \alpha}=\frac{b}{2\sin \beta}=\frac{c}{2\sin \gamma}\)

Související články

Externí odkazy


Commons nabízí fotografie, obrázky a videa k tématu
Trigonometrie