Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Fresnelovy rovnice
Z Multimediaexpo.cz
m (1 revizi) |
(+ Masivní vylepšení) |
||
Řádka 1: | Řádka 1: | ||
- | {{ | + | {{Upravit}}{{Neověřeno}} |
+ | |||
+ | '''Fresnelovy rovnice''' (případně '''Fresnelovy vzorce''') udávají intenzitu odraženého a [[lom vlnění|lomeného]] [[světlo|světla]]. | ||
+ | |||
+ | Pokud nedochází k úplnému odrazu, určitá část nepolarizovaného světla se od optického prostředí (vody, skla, atd.) odráží, zatímco zbývající část do prostředí vstupuje a lomí se. | ||
+ | |||
+ | Hodnoty koeficientů odrazu záleží na [[polarizace|polarizaci]] dopadajícího světla. Rozlišujeme polarizaci s a p. Při s polarizaci je vektor elektrické intenzity dopadajícího světla kolmý na rovinu dopadu, v případě p polarizace je naopak součástí této roviny. Rovinou dopadu nazýváme rovinu, která obsahuje všechny tři paprsky (dopadající, lomený a odražený). | ||
+ | |||
+ | Zajímavostí p polarizace je skutečnost, že při určitém úhlu, [[Brewsterův úhel|Brewsterově úhlu]], se všechno světlo lomí, intenzita odraženého svazku je v tomto případě nulová. | ||
+ | |||
+ | Nechť jsou [[index lomu|indexy lomu]] prostředí <math>n_1, n_2</math> (světlo vstupuje prostředím o indexu <math>n_1</math>). Dále označme postupně <math>\theta_i, \theta_r,\theta_t</math> úhel dopadu, odrazu a lomu. Pak pro koeficienty odrazu (reflexe) <math>R_s, R_p</math> platí: | ||
+ | |||
+ | : <math>R_s = \left[\frac{n_1\cos(\theta_i)-n_2\cos(\theta_t)}{n_1\cos(\theta_i)+n_2\cos(\theta_t)}\right]^2=\left[\frac{n_1\cos(\theta_i)-n_2\sqrt{1-\left(\frac{n_1}{n_2} \sin\theta_i\right)^2}}{n_1\cos(\theta_i)+n_2\sqrt{1-\left(\frac{n_1}{n_2} \sin\theta_i\right)^2}}\right]^2</math> | ||
+ | |||
+ | |||
+ | : <math>R_p = \left[\frac{n_1\cos(\theta_t)-n_2\cos(\theta_i)}{n_1\cos(\theta_t)+n_2\cos(\theta_i)}\right]^2=\left[\frac{n_1\sqrt{1-\left(\frac{n_1}{n_2} \sin\theta_i\right)^2}-n_2\cos(\theta_i)}{n_1\sqrt{1-\left(\frac{n_1}{n_2} \sin\theta_i\right)^2}+n_2\cos(\theta_i)}\right]^2</math> | ||
+ | |||
+ | Koeficienty udávají poměr intenzity odraženého a dopadajícího svazku. Pokud nás naopak zajímá, kolik světla prošlo, tedy koeficient <math>T</math> (transmise), pak jej určíme jako <math>T=1-R</math> pro každou z polarizací. | ||
+ | |||
+ | Pokud na rozhraní navíc dopadá světlo ideálně nepolarizované, tak celkový reflexní koeficient může být určen jako | ||
+ | |||
+ | : <math>R = \frac{R_s+R_p}{2}</math> | ||
+ | |||
+ | Speciálním případem je pak situace kdy světlo dopadá na rozhraní kolmo, tedy v případech, kdy všechny úhly <math>\theta_i, \theta_r,\theta_t</math> jsou nulové. Fresnelovy rovnice pak nezávisí na polarizaci a nabývají tvaru. | ||
+ | |||
+ | : <math>R_p = \left[\frac{n_1-n_2}{n_1+n_2}\right]^2 = R_s = R </math> | ||
+ | |||
+ | S využitím předchozího výrazu pro nepolarizované světlo. | ||
+ | |||
+ | |||
+ | {{Článek z Wikipedie}} | ||
[[Kategorie:Optika]] | [[Kategorie:Optika]] | ||
[[Kategorie:Rovnice]] | [[Kategorie:Rovnice]] |
Verze z 19. 9. 2014, 22:56
Fresnelovy rovnice (případně Fresnelovy vzorce) udávají intenzitu odraženého a lomeného světla.
Pokud nedochází k úplnému odrazu, určitá část nepolarizovaného světla se od optického prostředí (vody, skla, atd.) odráží, zatímco zbývající část do prostředí vstupuje a lomí se.
Hodnoty koeficientů odrazu záleží na polarizaci dopadajícího světla. Rozlišujeme polarizaci s a p. Při s polarizaci je vektor elektrické intenzity dopadajícího světla kolmý na rovinu dopadu, v případě p polarizace je naopak součástí této roviny. Rovinou dopadu nazýváme rovinu, která obsahuje všechny tři paprsky (dopadající, lomený a odražený).
Zajímavostí p polarizace je skutečnost, že při určitém úhlu, Brewsterově úhlu, se všechno světlo lomí, intenzita odraženého svazku je v tomto případě nulová.
Nechť jsou indexy lomu prostředí <math>n_1, n_2</math> (světlo vstupuje prostředím o indexu <math>n_1</math>). Dále označme postupně <math>\theta_i, \theta_r,\theta_t</math> úhel dopadu, odrazu a lomu. Pak pro koeficienty odrazu (reflexe) <math>R_s, R_p</math> platí:
- <math>R_s = \left[\frac{n_1\cos(\theta_i)-n_2\cos(\theta_t)}{n_1\cos(\theta_i)+n_2\cos(\theta_t)}\right]^2=\left[\frac{n_1\cos(\theta_i)-n_2\sqrt{1-\left(\frac{n_1}{n_2} \sin\theta_i\right)^2}}{n_1\cos(\theta_i)+n_2\sqrt{1-\left(\frac{n_1}{n_2} \sin\theta_i\right)^2}}\right]^2</math>
- <math>R_p = \left[\frac{n_1\cos(\theta_t)-n_2\cos(\theta_i)}{n_1\cos(\theta_t)+n_2\cos(\theta_i)}\right]^2=\left[\frac{n_1\sqrt{1-\left(\frac{n_1}{n_2} \sin\theta_i\right)^2}-n_2\cos(\theta_i)}{n_1\sqrt{1-\left(\frac{n_1}{n_2} \sin\theta_i\right)^2}+n_2\cos(\theta_i)}\right]^2</math>
Koeficienty udávají poměr intenzity odraženého a dopadajícího svazku. Pokud nás naopak zajímá, kolik světla prošlo, tedy koeficient <math>T</math> (transmise), pak jej určíme jako <math>T=1-R</math> pro každou z polarizací.
Pokud na rozhraní navíc dopadá světlo ideálně nepolarizované, tak celkový reflexní koeficient může být určen jako
- <math>R = \frac{R_s+R_p}{2}</math>
Speciálním případem je pak situace kdy světlo dopadá na rozhraní kolmo, tedy v případech, kdy všechny úhly <math>\theta_i, \theta_r,\theta_t</math> jsou nulové. Fresnelovy rovnice pak nezávisí na polarizaci a nabývají tvaru.
- <math>R_p = \left[\frac{n_1-n_2}{n_1+n_2}\right]^2 = R_s = R </math>
S využitím předchozího výrazu pro nepolarizované světlo.
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |