Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Střední hodnota
Z Multimediaexpo.cz
m (1 revizi) |
(+ Masivní vylepšení) |
||
Řádka 1: | Řádka 1: | ||
- | {{ | + | {{Možná hledáte|[[Věta o střední hodnotě diferenciálního počtu]]}} |
+ | '''Střední hodnota''' je nejznámější [[míra polohy]] ve [[statistika|statistice]]. Často se nazývá ''populační průměr''. | ||
+ | Střední hodnota [[náhodná veličina|náhodné veličiny]] <math>X</math> se značí <math>\operatorname{E}X</math>, <math>\operatorname{E}(X)</math> nebo také <math>\langle X\rangle</math>. | ||
+ | |||
+ | == Definice == | ||
+ | Střední hodnota je parametr [[rozdělení pravděpodobnosti|rozdělení]] [[náhodná veličina|náhodné veličiny]], který je definován jako [[vážený průměr]] daného rozdělení. V řeči [[teorie míry]] se jedná o hodnotu | ||
+ | :<math>\operatorname{E}X = \int_{R} x \mathrm{d}P(x)</math>, | ||
+ | kde <math>P</math> je pravděpodobnostní míra určující [[rozdělení náhodné veličiny]] <math>X</math>. Pokud výraz na pravé straně [[absolutní konvergence|nekonverguje absolutně]], pak říkáme, že střední hodnota neexistuje. | ||
+ | |||
+ | Speciálně: | ||
+ | * Má-li náhodná veličina <math>X</math> [[spojité rozdělení]] s [[hustota rozdělení pravděpodobnosti|hustotou rozdělení]] <math>f(x)</math>, pak | ||
+ | :<math>\operatorname{E}X = \int_{R} x f(x) \mathrm{d}x</math>. | ||
+ | * Má-li náhodná veličina <math>X</math> [[diskrétní rozdělení]] kde <math>P[X=s_{i}]=p_{i}</math> pro <math>i \in I</math> nejvýše [[spočetná množina|spočetnou množinu]] různých výsledků, pak | ||
+ | :<math>\operatorname{E}X = \sum_{I} s_{i} p_{i}</math> | ||
+ | |||
+ | == Vlastnosti == | ||
+ | Střední hodnota [[konstanta|konstanty]] <math>c</math> je | ||
+ | :<math>\operatorname{E}(c)=c</math> | ||
+ | |||
+ | Pro střední hodnotu [[součin]]u náhodné veličiny <math>X</math> a konstanty <math>c</math> platí | ||
+ | :<math>\operatorname{E}(cX)=c\operatorname{E}(X)</math> | ||
+ | |||
+ | Střední hodnota [[Sčítání|součtu]] dvou náhodných veličin <math>X, Y</math> je rovna součtu středních hodnot těchto veličin, tedy | ||
+ | :<math>\operatorname{E}(X+Y)=\operatorname{E}(X)+\operatorname{E}(Y)</math> | ||
+ | Tento vztah lze samozřejmě zobecnit na součet libovolného počtu náhodných veličin. | ||
+ | |||
+ | Pro [[nezávislé jevy|nezávislé náhodné veličiny]] <math>X, Y</math> je střední hodnota součinu těchto veličin rovna součinu jejich středních hodnot, tzn. | ||
+ | :<math>\operatorname{E}(XY)=\operatorname{E}(X)\operatorname{E}(Y)</math> | ||
+ | Tento vztah je možné zobecnit pro součin libovolného počtu vzájemně nezávislých náhodných veličin! | ||
+ | |||
+ | == Příklady == | ||
+ | === Diskrétní náhodná veličina === | ||
+ | Mějme náhodnou veličinu, která s pravděpodobností 0,3 nabývá hodnoty 1, s pravděpodobností 0,2 nabývá hodnoty 2 a s pravděpodobností 0,5 nabývá hodnoty 3. | ||
+ | |||
+ | Střední hodnota je pak (0,3 × 1) + (0,2 × 2) + (0,5 × 3) = 2,2. | ||
+ | |||
+ | === Spojitá náhodná veličina === | ||
+ | Mějme náhodnou veličinu, jejíž hustota pravděpodobnosti je na intervalu <0,1> f(x)=2x , jinde identicky rovna 0. To je rozdělení, v němž je hustota pravděpodobnosti přímo úměrná hodnotě x. | ||
+ | Potom střední hodnota je integrálem x*2x na intervalu <0,1>. Výsledkem je střední hodnota 2/3. | ||
+ | |||
+ | == Související články == | ||
+ | * [[Rozptyl (statistika)]] | ||
+ | * [[Charakteristika náhodné veličiny]] | ||
+ | |||
+ | |||
+ | {{Článek z Wikipedie}} | ||
[[Kategorie:Matematická statistika]] | [[Kategorie:Matematická statistika]] |
Verze z 19. 10. 2014, 20:20
Střední hodnota je nejznámější míra polohy ve statistice. Často se nazývá populační průměr.
Střední hodnota náhodné veličiny <math>X</math> se značí <math>\operatorname{E}X</math>, <math>\operatorname{E}(X)</math> nebo také <math>\langle X\rangle</math>.
Obsah |
Definice
Střední hodnota je parametr rozdělení náhodné veličiny, který je definován jako vážený průměr daného rozdělení. V řeči teorie míry se jedná o hodnotu
- <math>\operatorname{E}X = \int_{R} x \mathrm{d}P(x)</math>,
kde <math>P</math> je pravděpodobnostní míra určující rozdělení náhodné veličiny <math>X</math>. Pokud výraz na pravé straně nekonverguje absolutně, pak říkáme, že střední hodnota neexistuje.
Speciálně:
- Má-li náhodná veličina <math>X</math> spojité rozdělení s hustotou rozdělení <math>f(x)</math>, pak
- <math>\operatorname{E}X = \int_{R} x f(x) \mathrm{d}x</math>.
- Má-li náhodná veličina <math>X</math> diskrétní rozdělení kde <math>P[X=s_{i}]=p_{i}</math> pro <math>i \in I</math> nejvýše spočetnou množinu různých výsledků, pak
- <math>\operatorname{E}X = \sum_{I} s_{i} p_{i}</math>
Vlastnosti
Střední hodnota konstanty <math>c</math> je
- <math>\operatorname{E}(c)=c</math>
Pro střední hodnotu součinu náhodné veličiny <math>X</math> a konstanty <math>c</math> platí
- <math>\operatorname{E}(cX)=c\operatorname{E}(X)</math>
Střední hodnota součtu dvou náhodných veličin <math>X, Y</math> je rovna součtu středních hodnot těchto veličin, tedy
- <math>\operatorname{E}(X+Y)=\operatorname{E}(X)+\operatorname{E}(Y)</math>
Tento vztah lze samozřejmě zobecnit na součet libovolného počtu náhodných veličin.
Pro nezávislé náhodné veličiny <math>X, Y</math> je střední hodnota součinu těchto veličin rovna součinu jejich středních hodnot, tzn.
- <math>\operatorname{E}(XY)=\operatorname{E}(X)\operatorname{E}(Y)</math>
Tento vztah je možné zobecnit pro součin libovolného počtu vzájemně nezávislých náhodných veličin!
Příklady
Diskrétní náhodná veličina
Mějme náhodnou veličinu, která s pravděpodobností 0,3 nabývá hodnoty 1, s pravděpodobností 0,2 nabývá hodnoty 2 a s pravděpodobností 0,5 nabývá hodnoty 3.
Střední hodnota je pak (0,3 × 1) + (0,2 × 2) + (0,5 × 3) = 2,2.
Spojitá náhodná veličina
Mějme náhodnou veličinu, jejíž hustota pravděpodobnosti je na intervalu <0,1> f(x)=2x , jinde identicky rovna 0. To je rozdělení, v němž je hustota pravděpodobnosti přímo úměrná hodnotě x. Potom střední hodnota je integrálem x*2x na intervalu <0,1>. Výsledkem je střední hodnota 2/3.
Související články
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |