Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Celé číslo
Z Multimediaexpo.cz
m (Nahrazení textu) |
m (Nahrazení textu „</math>“ textem „\)</big>“) |
||
(Nejsou zobrazeny 2 mezilehlé verze.) | |||
Řádka 1: | Řádka 1: | ||
- | '''Celá čísla''' se skládají z [[Přirozené číslo|přirozených čísel]] (1, 2, 3, …), [[0|nuly]] a [[záporné číslo|záporných]] celých čísel (-1, -2, -3, …). [[Množina]] celých čísel se v [[Matematika|matematice]] většinou označuje '''Z''', nebo < | + | '''Celá čísla''' se skládají z [[Přirozené číslo|přirozených čísel]] (1, 2, 3, …), [[0|nuly]] a [[záporné číslo|záporných]] celých čísel (-1, -2, -3, …). [[Množina]] celých čísel se v [[Matematika|matematice]] většinou označuje '''Z''', nebo <big>\(\mathbb{Z}\)</big>, podle ''Zahlen'' (německy ''čísla''). Podobně jako přirozená čísla, tvoří celá čísla [[Nekonečno|nekonečnou]] [[Spočetná množina|spočetnou množinu]]. Studiem celých čísel se zabývá [[teorie čísel]]. |
== Algebraické vlastnosti == | == Algebraické vlastnosti == | ||
Množina celých čísel '''Z''' je uzavřená na operaci [[sčítání]] a [[násobení]], to znamená, že součet i součin dvou celých čísel je opět celé číslo. Navíc oproti přirozeným číslům je uzavřená i pro [[odčítání]]. Není však uzavřena pro [[dělení]], neboť [[podíl]] dvou celých čísel už nemusí být celé číslo (např. 1/2). | Množina celých čísel '''Z''' je uzavřená na operaci [[sčítání]] a [[násobení]], to znamená, že součet i součin dvou celých čísel je opět celé číslo. Navíc oproti přirozeným číslům je uzavřená i pro [[odčítání]]. Není však uzavřena pro [[dělení]], neboť [[podíl]] dvou celých čísel už nemusí být celé číslo (např. 1/2). | ||
Řádka 27: | Řádka 27: | ||
== Konstrukce == | == Konstrukce == | ||
Celá čísla mohou být zkonstruována z přirozených čísel definováním tříd ekvivalence dvojic čísel '''N'''×'''N''' s [[Relace ekvivalence|relací ekvivalence]], „~“, kde | Celá čísla mohou být zkonstruována z přirozených čísel definováním tříd ekvivalence dvojic čísel '''N'''×'''N''' s [[Relace ekvivalence|relací ekvivalence]], „~“, kde | ||
- | :< | + | :<big>\( (a,b) \sim (c,d) \,\! \)</big> |
právě tehdy, když | právě tehdy, když | ||
- | :< | + | :<big>\(a+d = b+c. \,\!\)</big> |
Kdybychom brali 0 jako přirozené číslo, pak přirozená čísla můžeme považovat za čísla celá vnořením, které přirozenému číslu ''n'' přiřadí [(''n'',0)], kde [(''a'',''b'')] značí třídu ekvivalence, která obsahuje (''a'',''b''). | Kdybychom brali 0 jako přirozené číslo, pak přirozená čísla můžeme považovat za čísla celá vnořením, které přirozenému číslu ''n'' přiřadí [(''n'',0)], kde [(''a'',''b'')] značí třídu ekvivalence, která obsahuje (''a'',''b''). | ||
Sčítání a násobení celých čísel je definováno následovně: | Sčítání a násobení celých čísel je definováno následovně: | ||
- | :< | + | :<big>\([(a,b)]+[(c,d)] := [(a+c,b+d)].\,\)</big> |
- | :< | + | :<big>\([(a,b)]\cdot[(c,d)] := [(ac+bd,ad+bc)].\,\)</big> |
Dá se lehce ověřit, že výsledek je nezávislý na volbě reprezentantů třídy ekvivalence. | Dá se lehce ověřit, že výsledek je nezávislý na volbě reprezentantů třídy ekvivalence. | ||
Typicky, [(''a'',''b'')] je označení pro | Typicky, [(''a'',''b'')] je označení pro | ||
- | :< | + | :<big>\(\begin{cases} n, & \mbox{if } a \ge b \\ -n, & \mbox{if } a < b, \end{cases} \)</big> |
kde | kde | ||
- | :< | + | :<big>\(n = |a-b|.\,\)</big> |
Jestliže přirozená čísla přiřadíme k odpovídajícím celým číslům (použitím výše uvedeného vnoření), pak toto přiřazení je jednoznačné. | Jestliže přirozená čísla přiřadíme k odpovídajícím celým číslům (použitím výše uvedeného vnoření), pak toto přiřazení je jednoznačné. | ||
Příklady: | Příklady: | ||
- | :< | + | :<big>\(\begin{align} |
0 &= [(0,0)] &= [(1,1)] &= \cdots & &= [(k,k)] \\ | 0 &= [(0,0)] &= [(1,1)] &= \cdots & &= [(k,k)] \\ | ||
1 &= [(1,0)] &= [(2,1)] &= \cdots & &= [(k+1,k)] \\ | 1 &= [(1,0)] &= [(2,1)] &= \cdots & &= [(k+1,k)] \\ | ||
Řádka 47: | Řádka 47: | ||
2 &= [(2,0)] &= [(3,1)] &= \cdots & &= [(k+2,k)] \\ | 2 &= [(2,0)] &= [(3,1)] &= \cdots & &= [(k+2,k)] \\ | ||
-2 &= [(0,2)] &= [(1,3)] &= \cdots & &= [(k,k+2)] | -2 &= [(0,2)] &= [(1,3)] &= \cdots & &= [(k,k+2)] | ||
- | \end{align}</ | + | \end{align}\)</big> |
Aktuální verze z 14. 8. 2022, 14:51
Celá čísla se skládají z přirozených čísel (1, 2, 3, …), nuly a záporných celých čísel (-1, -2, -3, …). Množina celých čísel se v matematice většinou označuje Z, nebo \(\mathbb{Z}\), podle Zahlen (německy čísla). Podobně jako přirozená čísla, tvoří celá čísla nekonečnou spočetnou množinu. Studiem celých čísel se zabývá teorie čísel.
Algebraické vlastnosti
Množina celých čísel Z je uzavřená na operaci sčítání a násobení, to znamená, že součet i součin dvou celých čísel je opět celé číslo. Navíc oproti přirozeným číslům je uzavřená i pro odčítání. Není však uzavřena pro dělení, neboť podíl dvou celých čísel už nemusí být celé číslo (např. 1/2). Následující tabulka ukazuje zakladní vlastnosti násobení a sčítaní pro jakákoliv celá čísla a, b, c.
sčítání | násobení | |
uzavřenost: | a + b je celé číslo | a × b je celé číslo |
asociativita: | a + (b + c) = (a + b) + c | a × (b × c) = (a × b) × c |
komutativita: | a + b = b + a | a × b = b × a |
existence neutrálního prvku: | a + 0 = a | a × 1 = a |
existence inverzního prvku: | a + (−a) = 0 | |
distributivita: | a × (b + c) = (a × b) + (a × c) | |
Bez dělitelů nuly: | jestliže ab = 0, pak buď a = 0 nebo b = 0 |
V algebře tvoří Z s prvními pěti vlastnostmi uvedenými výše na operaci sčítání Abelovskou grupu. Grupa Z s operací sčítaní je cyklická, protože každý nenulový prvek může být vyjádřen konečným součtem (např 1 + 1 + … + 1 nebo (−1) + (−1) + … + (−1)). Říkáme tedy, že grupa Z s operací sčítání je nekonečná cyklická grupa a tedy každá nekonečná cyklická grupa je isomorfní Z. První čtyři vlastnosti uvedené výše s operací násobení říkají, že Z s toutu operací je komutativní monoid. Ale ne každý prvek ze Z ma inverzní prvek (ve smyslu násobení), prostě neexistuje takové celé číslo x, které by vyhovovalo rovnici 2x = 1. To znamená, že Z netvoří spolu s operací násobení grupu. Všechny vlastnosti z tabulky, kromě poslední, dohormady s operacemi sčítání a násobení na Z tvoří komutativní okruh s jednotkou. Přidáním poslední vlastnosti získame obor integrity nad Z. Neexistence inverzních prvků vzhledem k násobení, neboli že Z není uzavřena na dělení, znamená, že Z není těleso. Nejmenším tělesem obsahujícím celá čísla je tedy těleso racionálních čísel. Podobně se dá definovat i podílové těleso jakéhokoliv oboru integrity. Přestože bežné děleni není na Z definováno, neznamená to, že nemůžeme používat algoritmus dělení, ten říka: mějme dvě celá čísla a a b, kde b ≠ 0, pak existují právě dvě celá čísla q a r taková, že a = q × b + r a 0 ≤ r < |b|, kde |b| značí absolutní hodnotu b. Celé číslo q se nazývá kvocient a r se nazývá zbytek po dělení čísla a číslem b. To tvoří základ pro Euklidův algoritmus k výpočtu největšího společného dělitele.
Konstrukce
Celá čísla mohou být zkonstruována z přirozených čísel definováním tříd ekvivalence dvojic čísel N×N s relací ekvivalence, „~“, kde
- \( (a,b) \sim (c,d) \,\! \)
právě tehdy, když
- \(a+d = b+c. \,\!\)
Kdybychom brali 0 jako přirozené číslo, pak přirozená čísla můžeme považovat za čísla celá vnořením, které přirozenému číslu n přiřadí [(n,0)], kde [(a,b)] značí třídu ekvivalence, která obsahuje (a,b). Sčítání a násobení celých čísel je definováno následovně:
- \([(a,b)]+[(c,d)] := [(a+c,b+d)].\,\)
- \([(a,b)]\cdot[(c,d)] := [(ac+bd,ad+bc)].\,\)
Dá se lehce ověřit, že výsledek je nezávislý na volbě reprezentantů třídy ekvivalence. Typicky, [(a,b)] je označení pro
- \(\begin{cases} n, & \mbox{if } a \ge b \\ -n, & \mbox{if } a < b, \end{cases} \)
kde
- \(n = |a-b|.\,\)
Jestliže přirozená čísla přiřadíme k odpovídajícím celým číslům (použitím výše uvedeného vnoření), pak toto přiřazení je jednoznačné. Příklady:
- \(\begin{align}
0 &= [(0,0)] &= [(1,1)] &= \cdots & &= [(k,k)] \\ 1 &= [(1,0)] &= [(2,1)] &= \cdots & &= [(k+1,k)] \\
-1 &= [(0,1)] &= [(1,2)] &= \cdots & &= [(k,k+1)] \\
2 &= [(2,0)] &= [(3,1)] &= \cdots & &= [(k+2,k)] \\
-2 &= [(0,2)] &= [(1,3)] &= \cdots & &= [(k,k+2)] \end{align}\)
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |