Ve středu 26. března 2025 se podařilo týmu Multimediaexpo.cz
dokončit zcela nový balíček 1 000 000 fotografií na plných 100 procent !
Nedostižná hranice 4 000 000 fotografií se února 2026 už nedožije...
FFresh emotion happy.png

Substituce (matematika)

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Nový článek)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
(Není zobrazena jedna mezilehlá verze.)
Řádka 6: Řádka 6:
=== Exponenciální rovnice ===
=== Exponenciální rovnice ===
Řešení [[exponenciální rovnice]] pomocí '''substituce''':
Řešení [[exponenciální rovnice]] pomocí '''substituce''':
-
# <math>2^{2x} + 2^{x} - 6 = 0</math>
+
# <big>\(2^{2x} + 2^{x} - 6 = 0\)</big>
-
# Zavedeme substituci <math>a = 2^{x}</math>:<br /><math>a^{2} + a - 6 = 0</math>
+
# Zavedeme substituci <big>\(a = 2^{x}\)</big>:<br /><big>\(a^{2} + a - 6 = 0\)</big>
-
# Vypočítáme kvadratickou rovnici:<br /><math>a_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-6)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{25}}{2} = \frac{-1 \pm 5}{2}</math><br /><br /><math>a_1 = \frac{-1 + 5}{2} = \frac{4}{2} = 2</math><br /><br /><math>a_2 = \frac{-1 - 5}{2} = \frac{-6}{2} = -3</math>
+
# Vypočítáme kvadratickou rovnici:<br /><big>\(a_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-1 \pm \sqrt{1^2 - 4 \cdot 1 \cdot (-6)}}{2 \cdot 1} = \frac{-1 \pm \sqrt{25}}{2} = \frac{-1 \pm 5}{2}\)</big><br /><br /><big>\(a_1 = \frac{-1 + 5}{2} = \frac{4}{2} = 2\)</big><br /><br /><big>\(a_2 = \frac{-1 - 5}{2} = \frac{-6}{2} = -3\)</big>
# Nyní si můžeme napsat 2 [[rovnice]]:
# Nyní si můžeme napsat 2 [[rovnice]]:
-
## <math>2 = 2^x</math>
+
## <big>\(2 = 2^x\)</big>
-
## <math>-3 = 2^x</math>
+
## <big>\(-3 = 2^x\)</big>
# Vyřešíme obě [[rovnice]]:
# Vyřešíme obě [[rovnice]]:
-
## <math>2 = 2^x</math>
+
## <big>\(2 = 2^x\)</big>
-
### Rovnici budeme řešit pomocí stejného základu (lze to i zlogaritmovat), číslo <math>2</math> se dá napsat jako <math>2^1</math>:<br /><math>2^1 = 2^x</math>
+
### Rovnici budeme řešit pomocí stejného základu (lze to i zlogaritmovat), číslo <big>\(2\)</big> se dá napsat jako <big>\(2^1\)</big>:<br /><big>\(2^1 = 2^x\)</big>
-
### <math>1 = x</math>
+
### <big>\(1 = x\)</big>
-
### Výsledek je:<br /><math>x = 1</math><br />Tím je vyřešená jednoduchá exponenciální rovnice pomocí substituce.
+
### Výsledek je:<br /><big>\(x = 1\)</big><br />Tím je vyřešená jednoduchá exponenciální rovnice pomocí substituce.
-
## <math>-3 = 2^x</math><br />Rovnici bychom řešili pomocí [[Logaritmus|logaritmu]], ale zde to nejde, protože logaritmus záporného nelze řešit.
+
## <big>\(-3 = 2^x\)</big><br />Rovnici bychom řešili pomocí [[Logaritmus|logaritmu]], ale zde to nejde, protože logaritmus záporného nelze řešit.
=== Goniometrická rovnice ===
=== Goniometrická rovnice ===
Řešení [[goniometrické rovnice]] pomocí '''substituce''':
Řešení [[goniometrické rovnice]] pomocí '''substituce''':
-
# <math>(\sin x)^2 + 2\sin x - 3 = 0</math>
+
# <big>\((\sin x)^2 + 2\sin x - 3 = 0\)</big>
-
# Zavedeme substituci <math>a = \sin x</math>:<br /><math>a^{2} + 2a - 3 = 0</math>
+
# Zavedeme substituci <big>\(a = \sin x\)</big>:<br /><big>\(a^{2} + 2a - 3 = 0\)</big>
-
# Vypočítáme kvadratickou rovnici:<br /><math>a_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} = \frac{-2 \pm \sqrt{16}}{2} = \frac{-2 \pm 4}{2}</math><br /><br /><math>a_1 = \frac{-2 + 4}{2} = \frac{2}{2} = 1</math><br /><br /><math>a_2 = \frac{-2 - 4}{2} = \frac{-6}{2} = -3</math>
+
# Vypočítáme kvadratickou rovnici:<br /><big>\(a_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-3)}}{2 \cdot 1} = \frac{-2 \pm \sqrt{16}}{2} = \frac{-2 \pm 4}{2}\)</big><br /><br /><big>\(a_1 = \frac{-2 + 4}{2} = \frac{2}{2} = 1\)</big><br /><br /><big>\(a_2 = \frac{-2 - 4}{2} = \frac{-6}{2} = -3\)</big>
# Nyní si můžeme napsat 2 [[rovnice]]:
# Nyní si můžeme napsat 2 [[rovnice]]:
-
## <math>\sin x = 1</math>
+
## <big>\(\sin x = 1\)</big>
-
## <math>\sin x = -3</math>
+
## <big>\(\sin x = -3\)</big>
# Vyřešíme obě [[rovnice]]:
# Vyřešíme obě [[rovnice]]:
-
## <math>\sin x = 1</math><br /><math>x = \frac{1}{2}\pi + 2k\pi</math>
+
## <big>\(\sin x = 1\)</big><br /><big>\(x = \frac{1}{2}\pi + 2k\pi\)</big>
-
## <math>\sin x = -3</math><br /><math>x = \phi</math><br />Tím je vyřešená [[goniometrická rovnice]] pomocí substituce.
+
## <big>\(\sin x = -3\)</big><br /><big>\(x = \phi\)</big><br />Tím je vyřešená [[goniometrická rovnice]] pomocí substituce.
== Související články ==
== Související články ==

Aktuální verze z 14. 8. 2022, 14:53

Substituce je nahrazení složitějších výrazů jednoduššími výrazy. Používá se u složitých výrazů a výpočet je pak jednodušší (snadnější). [1]

Obsah

[skrýt]

Ukázky řešení příkladu

Exponenciální rovnice

Řešení exponenciální rovnice pomocí substituce:

  1. 22x+2x6=0
  2. Zavedeme substituci a=2x:
    a2+a6=0
  3. Vypočítáme kvadratickou rovnici:
    a1,2=b±b24ac2a=1±1241(6)21=1±252=1±52

    a1=1+52=42=2

    a2=152=62=3
  4. Nyní si můžeme napsat 2 rovnice:
    1. 2=2x
    2. 3=2x
  5. Vyřešíme obě rovnice:
    1. 2=2x
      1. Rovnici budeme řešit pomocí stejného základu (lze to i zlogaritmovat), číslo 2 se dá napsat jako 21:
        21=2x
      2. 1=x
      3. Výsledek je:
        x=1
        Tím je vyřešená jednoduchá exponenciální rovnice pomocí substituce.
    2. 3=2x
      Rovnici bychom řešili pomocí logaritmu, ale zde to nejde, protože logaritmus záporného nelze řešit.

Goniometrická rovnice

Řešení goniometrické rovnice pomocí substituce:

  1. (sinx)2+2sinx3=0
  2. Zavedeme substituci a=sinx:
    a2+2a3=0
  3. Vypočítáme kvadratickou rovnici:
    a1,2=b±b24ac2a=2±2241(3)21=2±162=2±42

    a1=2+42=22=1

    a2=242=62=3
  4. Nyní si můžeme napsat 2 rovnice:
    1. sinx=1
    2. sinx=3
  5. Vyřešíme obě rovnice:
    1. sinx=1
      x=12π+2kπ
    2. sinx=3
      x=ϕ
      Tím je vyřešená goniometrická rovnice pomocí substituce.

Související články

Reference

  1. Substituce - definice