Multimediaexpo.cz je již 18 let na českém internetu !!
Celá funkce
Z Multimediaexpo.cz
(+ Masivní vylepšení) |
m (Nahrazení textu „<math>“ textem „<big>\(“) |
||
Řádka 4: | Řádka 4: | ||
Každou celou funkci je možné zapsat jako [[Mocninná řada|mocninnou řadu]]. | Každou celou funkci je možné zapsat jako [[Mocninná řada|mocninnou řadu]]. | ||
- | Platí, že každá celá funkce splňující pro nějaké kladné konstanty ''M'' a ''R'' a přirozené číslo ''n'' nerovnost < | + | Platí, že každá celá funkce splňující pro nějaké kladné konstanty ''M'' a ''R'' a přirozené číslo ''n'' nerovnost <big>\(|f(z)| \le M |z|^n</math> pro všechna ''z'', <big>\(|z| \ge R</math>, je mnohočlen [[stupeň polynomu|stupně]] nejvýše ''n''. |
Zvláštním případem tohoto pro ''n'' = 0 je [[Liouvilleova věta (komplexní analýza)|Liouvillova věta]]: každá omezená celá funkce je funkcí konstantní. Z tohoto tvrzení lze snadno dokázat [[základní věta algebry|základní větu algebry]]. | Zvláštním případem tohoto pro ''n'' = 0 je [[Liouvilleova věta (komplexní analýza)|Liouvillova věta]]: každá omezená celá funkce je funkcí konstantní. Z tohoto tvrzení lze snadno dokázat [[základní věta algebry|základní větu algebry]]. |
Verze z 14. 8. 2022, 14:48
Celá funkce v oboru komplexní analýzy je taková funkce, která je holomorfní na celé komplexní rovině. Příkladem takových funkcí jsou všechny mnohočleny, exponenciální funkce, a vše, co z těchto můžeme dostat jejich skládáním, sčítáním a násobením.
Vlastnosti
Každou celou funkci je možné zapsat jako mocninnou řadu.
Platí, že každá celá funkce splňující pro nějaké kladné konstanty M a R a přirozené číslo n nerovnost \(|f(z)| \le M |z|^n</math> pro všechna z, \(|z| \ge R</math>, je mnohočlen stupně nejvýše n.
Zvláštním případem tohoto pro n = 0 je Liouvillova věta: každá omezená celá funkce je funkcí konstantní. Z tohoto tvrzení lze snadno dokázat základní větu algebry.
Související odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |