Přejeme Vám krásné svátky a 52 týdnů pohody a štěstí v roce 2025 !
Celá funkce
Z Multimediaexpo.cz
Celá funkce v oboru komplexní analýzy je taková funkce, která je holomorfní na celé komplexní rovině. Příkladem takových funkcí jsou všechny mnohočleny, exponenciální funkce, a vše, co z těchto můžeme dostat jejich skládáním, sčítáním a násobením.
Vlastnosti
Každou celou funkci je možné zapsat jako mocninnou řadu.
Platí, že každá celá funkce splňující pro nějaké kladné konstanty M a R a přirozené číslo n nerovnost \(|f(z)| \le M |z|^n\) pro všechna z, \(|z| \ge R\), je mnohočlen stupně nejvýše n.
Zvláštním případem tohoto pro n = 0 je Liouvillova věta: každá omezená celá funkce je funkcí konstantní. Z tohoto tvrzení lze snadno dokázat základní větu algebry.
Související odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |