Vážení zákazníci a čtenáři – od 28. prosince do 2. ledna máme zavřeno.
Přejeme Vám krásné svátky a 52 týdnů pohody a štěstí v roce 2025 !

Zlatý prostorový úhel

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Masivní vylepšení)
m (Nahrazení textu „<math>“ textem „<big>\(“)
Řádka 1: Řádka 1:
'''Zlatý prostorový úhel''' se v geometrii nazývá úhel, který rozděluje kouli na dva úhly α a β pro které platí, že poměr menšího úhlu α k většímu β je rovný poměru většího úhlu k celé kouli:
'''Zlatý prostorový úhel''' se v geometrii nazývá úhel, který rozděluje kouli na dva úhly α a β pro které platí, že poměr menšího úhlu α k většímu β je rovný poměru většího úhlu k celé kouli:
-
:<math>\frac{\alpha}{\beta} = \frac{\beta}{4\pi}</math> - mysleno v steradiánech
+
:<big>\(\frac{\alpha}{\beta} = \frac{\beta}{4\pi}</math> - mysleno v steradiánech
-
:<math>\alpha + \beta = 4 \pi</math>
+
:<big>\(\alpha + \beta = 4 \pi</math>
==Výpočet==
==Výpočet==
{{RIGHTTOC}}
{{RIGHTTOC}}
=== Výpočet užitím zlatého řezu ===
=== Výpočet užitím zlatého řezu ===
-
Zlatý úhel souvisí s číslem nazývaným [[zlatý řez]] (<math> \varphi = \frac {1+ \sqrt 5}{2}</math>), což je vlastně poměr mezi jednotlivými úhly:
+
Zlatý úhel souvisí s číslem nazývaným [[zlatý řez]] (<big>\( \varphi = \frac {1+ \sqrt 5}{2}</math>), což je vlastně poměr mezi jednotlivými úhly:
-
:<math>\beta = \varphi\alpha</math>
+
:<big>\(\beta = \varphi\alpha</math>
-
:<math>4 \pi = \varphi\beta</math>
+
:<big>\(4 \pi = \varphi\beta</math>
Po vzájemném dosazení rovnic dostaneme:
Po vzájemném dosazení rovnic dostaneme:
-
:<math>4 \pi = \varphi^2\alpha</math>  
+
:<big>\(4 \pi = \varphi^2\alpha</math>  
Z tohoto vztahu můžeme vypočítat hodnotu zlatého prostorového úhlu:
Z tohoto vztahu můžeme vypočítat hodnotu zlatého prostorového úhlu:
-
:<math>\frac {4 \pi} {\varphi^2} = \alpha </math>
+
:<big>\(\frac {4 \pi} {\varphi^2} = \alpha </math>
===Výpočet bez znalosti zlatého řezu===
===Výpočet bez znalosti zlatého řezu===
Řádka 26: Řádka 26:
Úloha je zadána dvěma rovnicemi.
Úloha je zadána dvěma rovnicemi.
-
:<math>\frac{\alpha}{\beta} = \frac{\beta}{4\pi}</math>
+
:<big>\(\frac{\alpha}{\beta} = \frac{\beta}{4\pi}</math>
-
:<math>\alpha + \beta = 4 \pi</math>
+
:<big>\(\alpha + \beta = 4 \pi</math>
Z druhé rovnice vyjádříme ''&beta;'' a dosadíme jej do první rovnice.
Z druhé rovnice vyjádříme ''&beta;'' a dosadíme jej do první rovnice.
-
:<math>\beta = 4\pi - \alpha</math>
+
:<big>\(\beta = 4\pi - \alpha</math>
-
:<math>\frac{\alpha}{4\pi - \alpha} = \frac{4\pi - \alpha}{4\pi}</math>
+
:<big>\(\frac{\alpha}{4\pi - \alpha} = \frac{4\pi - \alpha}{4\pi}</math>
Vynásobením čitatelů jmenovateli se zbavíme zlomků.
Vynásobením čitatelů jmenovateli se zbavíme zlomků.
-
:<math>4 \pi \alpha = 16 \pi^2 - 8 \pi \alpha + \alpha^2</math>
+
:<big>\(4 \pi \alpha = 16 \pi^2 - 8 \pi \alpha + \alpha^2</math>
-
:<math>0 = 16 \pi^2 - 12 \pi \alpha + \alpha^2</math>
+
:<big>\(0 = 16 \pi^2 - 12 \pi \alpha + \alpha^2</math>
A z kvadratické rovnice vypočteme dva kořeny ''&alpha;<sub>1</sub>'' a ''&alpha;<sub>2</sub>''.
A z kvadratické rovnice vypočteme dva kořeny ''&alpha;<sub>1</sub>'' a ''&alpha;<sub>2</sub>''.
-
:<math>\alpha_{1,2} = \frac {12 \pi \pm \sqrt {80} \pi} {32}</math>
+
:<big>\(\alpha_{1,2} = \frac {12 \pi \pm \sqrt {80} \pi} {32}</math>
-
:<math>\alpha_{1} = \frac {12 \pi + \sqrt {80} \pi} {32} = \frac {\sqrt {14} \pi}{8}</math>
+
:<big>\(\alpha_{1} = \frac {12 \pi + \sqrt {80} \pi} {32} = \frac {\sqrt {14} \pi}{8}</math>
-
:<math>\alpha_{2} = \frac {12 \pi - \sqrt {80} \pi} {32} = \frac {\pi}{4}</math>
+
:<big>\(\alpha_{2} = \frac {12 \pi - \sqrt {80} \pi} {32} = \frac {\pi}{4}</math>
==Související články==
==Související články==

Verze z 14. 8. 2022, 14:50

Zlatý prostorový úhel se v geometrii nazývá úhel, který rozděluje kouli na dva úhly α a β pro které platí, že poměr menšího úhlu α k většímu β je rovný poměru většího úhlu k celé kouli:

\(\frac{\alpha}{\beta} = \frac{\beta}{4\pi}</math> - mysleno v steradiánech
\(\alpha + \beta = 4 \pi</math>

Výpočet

Obsah

Výpočet užitím zlatého řezu

Zlatý úhel souvisí s číslem nazývaným zlatý řez (\( \varphi = \frac {1+ \sqrt 5}{2}</math>), což je vlastně poměr mezi jednotlivými úhly:

\(\beta = \varphi\alpha</math>
\(4 \pi = \varphi\beta</math>

Po vzájemném dosazení rovnic dostaneme:

\(4 \pi = \varphi^2\alpha</math>

Z tohoto vztahu můžeme vypočítat hodnotu zlatého prostorového úhlu:

\(\frac {4 \pi} {\varphi^2} = \alpha </math>

Výpočet bez znalosti zlatého řezu

Pokud nevíme o existenci zlatého řezu nebo jeho souvislosti se zlatým prostorovým úhlem, můžeme se pokusit spočítat velikost zlatého prostorového úhlu jinak.

Úloha je zadána dvěma rovnicemi.

\(\frac{\alpha}{\beta} = \frac{\beta}{4\pi}</math>
\(\alpha + \beta = 4 \pi</math>

Z druhé rovnice vyjádříme β a dosadíme jej do první rovnice.

\(\beta = 4\pi - \alpha</math>
\(\frac{\alpha}{4\pi - \alpha} = \frac{4\pi - \alpha}{4\pi}</math>

Vynásobením čitatelů jmenovateli se zbavíme zlomků.

\(4 \pi \alpha = 16 \pi^2 - 8 \pi \alpha + \alpha^2</math>
\(0 = 16 \pi^2 - 12 \pi \alpha + \alpha^2</math>

A z kvadratické rovnice vypočteme dva kořeny α1 a α2.

\(\alpha_{1,2} = \frac {12 \pi \pm \sqrt {80} \pi} {32}</math>
\(\alpha_{1} = \frac {12 \pi + \sqrt {80} \pi} {32} = \frac {\sqrt {14} \pi}{8}</math>
\(\alpha_{2} = \frac {12 \pi - \sqrt {80} \pi} {32} = \frac {\pi}{4}</math>

Související články