Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Skládání rychlostí
Z Multimediaexpo.cz
m (Nahrazení textu „<math>“ textem „<big>\(“) |
m (Nahrazení textu „</math>“ textem „\)</big>“) |
||
Řádka 1: | Řádka 1: | ||
- | '''Skládáním rychlostí''' se ve [[fyzika|fyzice]] zpravidla označuje důsledek [[Speciální teorie relativity]], přesněji [[Lorentzova transformace|Lorentzovy transformace]]. Pohybují-li se dva objekty vůči vztažné soutavě ''S'' rovnoběžnými [[Rychlost|rychlostmi]] <big>\(v_1</ | + | '''Skládáním rychlostí''' se ve [[fyzika|fyzice]] zpravidla označuje důsledek [[Speciální teorie relativity]], přesněji [[Lorentzova transformace|Lorentzovy transformace]]. Pohybují-li se dva objekty vůči vztažné soutavě ''S'' rovnoběžnými [[Rychlost|rychlostmi]] <big>\(v_1\)</big>, <big>\(v_2\)</big>, pak ve vztažné soustavě ''S' '' spojené s prvním z nich se bude druhý pohybovat rychlostí |
- | :<big>\(v'_2 = \frac{v_2-v_1}{1-\frac{v_1v_2}{c^2}}.</ | + | :<big>\(v'_2 = \frac{v_2-v_1}{1-\frac{v_1v_2}{c^2}}.\)</big> |
- | Když jsou obě rychlosti malé ve srovnání s [[rychlost světla|rychlostí světla ve vakuu]] <big>\(c</ | + | Když jsou obě rychlosti malé ve srovnání s [[rychlost světla|rychlostí světla ve vakuu]] <big>\(c\)</big>, je jmenovatel zlomku téměř roven jedné, takže rychlosti lze skládat prostým odčítáním (resp. sčítáním, když se tělesa pohybují opačnými směry). Při malých rychlostech tedy dobře funguje [[klasická fyzika]], při velkých rychlostech se začnou projevovat relativistické efekty. Výsledek skládání rychlostí menších než <big>\(c\)</big> bude podle relativistického vztahu také vždy menší než <big>\(c\)</big>. Rychlost světla ve vakuu představuje horní mez rychlosti, jakou se mohou tělesa pohybovat. |
Pro obecné směry rychlostí platí | Pro obecné směry rychlostí platí | ||
- | :<big>\(\mathbf{v}'_2 = \frac{\mathbf{v}_2+\mathbf{v}_1\left(\frac{\mathbf{v}_1\cdot\mathbf{v}_2}{|\mathbf{v}_1|^2}(\gamma-1)-\gamma\right)}{\gamma\left(1-\frac{\mathbf{v}_1\cdot\mathbf{v}_2}{c^2}\right)},\;</ | + | :<big>\(\mathbf{v}'_2 = \frac{\mathbf{v}_2+\mathbf{v}_1\left(\frac{\mathbf{v}_1\cdot\mathbf{v}_2}{|\mathbf{v}_1|^2}(\gamma-1)-\gamma\right)}{\gamma\left(1-\frac{\mathbf{v}_1\cdot\mathbf{v}_2}{c^2}\right)},\;\)</big>kde <big>\(\;\gamma=\frac{1}{\sqrt{1-\frac{|\mathbf{v}_1|^2}{c^2}}}\,\)</big> (což je [[Lorentzův faktor]]). |
Zajímavé je, že existuje fyzikální veličina podobná rychlosti, která také popisuje míru pohybu, ale není shora omezená a umožňuje skládání obyčejným sčítáním. Nazývá se [[rapidita]]. | Zajímavé je, že existuje fyzikální veličina podobná rychlosti, která také popisuje míru pohybu, ale není shora omezená a umožňuje skládání obyčejným sčítáním. Nazývá se [[rapidita]]. |
Aktuální verze z 14. 8. 2022, 14:53
Skládáním rychlostí se ve fyzice zpravidla označuje důsledek Speciální teorie relativity, přesněji Lorentzovy transformace. Pohybují-li se dva objekty vůči vztažné soutavě S rovnoběžnými rychlostmi \(v_1\), \(v_2\), pak ve vztažné soustavě S' spojené s prvním z nich se bude druhý pohybovat rychlostí
- \(v'_2 = \frac{v_2-v_1}{1-\frac{v_1v_2}{c^2}}.\)
Když jsou obě rychlosti malé ve srovnání s rychlostí světla ve vakuu \(c\), je jmenovatel zlomku téměř roven jedné, takže rychlosti lze skládat prostým odčítáním (resp. sčítáním, když se tělesa pohybují opačnými směry). Při malých rychlostech tedy dobře funguje klasická fyzika, při velkých rychlostech se začnou projevovat relativistické efekty. Výsledek skládání rychlostí menších než \(c\) bude podle relativistického vztahu také vždy menší než \(c\). Rychlost světla ve vakuu představuje horní mez rychlosti, jakou se mohou tělesa pohybovat.
Pro obecné směry rychlostí platí
- \(\mathbf{v}'_2 = \frac{\mathbf{v}_2+\mathbf{v}_1\left(\frac{\mathbf{v}_1\cdot\mathbf{v}_2}{|\mathbf{v}_1|^2}(\gamma-1)-\gamma\right)}{\gamma\left(1-\frac{\mathbf{v}_1\cdot\mathbf{v}_2}{c^2}\right)},\;\)kde \(\;\gamma=\frac{1}{\sqrt{1-\frac{|\mathbf{v}_1|^2}{c^2}}}\,\) (což je Lorentzův faktor).
Zajímavé je, že existuje fyzikální veličina podobná rychlosti, která také popisuje míru pohybu, ale není shora omezená a umožňuje skládání obyčejným sčítáním. Nazývá se rapidita.
Související články
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |