The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Afinní prostor

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (1 revizi)
(+ Výrazné vylepšení)
Řádka 1: Řádka 1:
-
{{Wikipedia-cs|Afinní prostor|700}}
+
'''Afinní prostor''' je v [[geometrie|geometrii]] [[prostor (matematika)|prostor]], na kterém je definováno sčítání [[bod]]ů a [[vektor]]ů.<ref>{{Citace monografie
 +
| příjmení = Reid
 +
| jméno = Miles A. 
 +
| příjmení2 = Szendrői
 +
| jméno2 = Bala
 +
| titul = Geometry and topology
 +
| vydavatel = Cambridge University Press
 +
| rok = 2005
 +
| isbn = 9780521848893
 +
| počet stran=196
 +
| strany = 63, 64
 +
| jazyk = anglicky
 +
}}</ref> Slouží jako model pro [[afinní geometrie|afinní geometrii]].<ref name="leung">{{Citace monografie
 +
| příjmení = Leung
 +
| jméno = Kam-tim 
 +
| titul = Linear algebra and geometry
 +
| vydavatel = Hong Kong University Press
 +
| rok = 1974
 +
| isbn = 9780856561115
 +
| počet stran=309
 +
| strany = 96
 +
| kapitola=3.9
 +
| jazyk = anglicky
 +
}}</ref> Jedná se o zobecnění [[eukleidovský prostor|eukleidovského prostoru]].
 +
== Definice ==
 +
Afinní prostor je [[množina]] <math>A</math> spolu se [[zobrazení (matematika)|zobrazením]]
 +
 +
:<math>+\colon\,\, V \times A\to A,\quad (v, a) \mapsto v + a</math>
 +
kde <math>V</math> je [[vektorový prostor]], které má následující vlastnosti:<ref>{{Citace monografie
 +
| příjmení = Tarrida
 +
| jméno = Agustí Reventós
 +
| titul = Affine Maps, Euclidean Motions and Quadrics
 +
| vydavatel = Springer
 +
| rok = 2011
 +
| isbn = 9780857297099
 +
| počet stran=458
 +
| strany = 1
 +
| poznámka = Definice 1.1
 +
| jazyk = anglicky
 +
}}</ref><ref>{{Citace monografie
 +
| příjmení = Prasolov
 +
| jméno = Viktor Vasilevich
 +
| příjmení2 = Tikhomirov
 +
| jméno2 = Vladimir Mikhailovich
 +
| titul = Geometry
 +
| vydavatel = AMS
 +
| rok = 2001
 +
| isbn = 9780821820384
 +
| počet stran=257
 +
| strany = 20
 +
| poznámka = Definice 5
 +
| jazyk = anglicky
 +
}}</ref>
 +
 +
:1. Pro každé ''a'' v ''A'' platí <math>0+a = a\quad</math>, kde <math>0\in V</math> je nulový vektor
 +
 +
:2. Pro každé ''v'', ''w'' ve ''V'' a ''a'' v ''A'' platí <math>v+(w+a) = (v+w)+a\,</math>,
 +
 +
:3. Pro každé ''a'' v ''A'', zobrazení <math>V \to A,\quad v \mapsto v + a\quad</math> je [[bijekce]].
 +
 +
Volbou počátku <math>a\in A</math> je možné identifikovat ''A'' s vektorovým prostorem ''V'' zobrazením <math>a+v\mapsto v</math>. Naopak, každý vektorový prostor ''V'' je afinní prostor nad sebou samým.
 +
 +
== Afinní geometrie ==
 +
Afinní prostor je úzce spojen s [[afinní geometrie|afinní geometrií]].<ref name="leung"/> Na afinním prostoru jsou definovány [[úsečka|úsečky]], [[přímka|přímky]], poměry velikostí úseček, nikoli však vzdálenosti bodů nebo [[úhel|úhly]] vektorů.
 +
 +
== Literatura ==
 +
==== Česká ====
 +
* {{Citace monografie
 +
| příjmení = Bican
 +
| jméno = Ladislav
 +
| titul = Lineární algebra a geometrie
 +
| vydavatel = Academia
 +
| rok = 2002
 +
| isbn = 80-200-0843-8
 +
| kapitola=Afinní prostor
 +
| jazyk = česky
 +
}}
 +
 +
== Reference ==
 +
<references />
 +
 +
 +
{{Článek z Wikipedie}}
[[Kategorie:Geometrie]]
[[Kategorie:Geometrie]]
[[Kategorie:Lineární algebra]]
[[Kategorie:Lineární algebra]]

Verze z 17. 2. 2014, 12:10

Afinní prostor je v geometrii prostor, na kterém je definováno sčítání bodů a vektorů.[1] Slouží jako model pro afinní geometrii.[2] Jedná se o zobecnění eukleidovského prostoru.

Obsah

Definice

Afinní prostor je množina <math>A</math> spolu se zobrazením

<math>+\colon\,\, V \times A\to A,\quad (v, a) \mapsto v + a</math>

kde <math>V</math> je vektorový prostor, které má následující vlastnosti:[3][4]

1. Pro každé a v A platí <math>0+a = a\quad</math>, kde <math>0\in V</math> je nulový vektor
2. Pro každé v, w ve V a a v A platí <math>v+(w+a) = (v+w)+a\,</math>,
3. Pro každé a v A, zobrazení <math>V \to A,\quad v \mapsto v + a\quad</math> je bijekce.

Volbou počátku <math>a\in A</math> je možné identifikovat A s vektorovým prostorem V zobrazením <math>a+v\mapsto v</math>. Naopak, každý vektorový prostor V je afinní prostor nad sebou samým.

Afinní geometrie

Afinní prostor je úzce spojen s afinní geometrií.[2] Na afinním prostoru jsou definovány úsečky, přímky, poměry velikostí úseček, nikoli však vzdálenosti bodů nebo úhly vektorů.

Literatura

Česká

  • BICAN, Ladislav. Lineární algebra a geometrie. [s.l.] : Academia, 2002. ISBN 80-200-0843-8. Kapitola Afinní prostor. (česky) 

Reference

  1. REID, Miles A.; SZENDRŐI, Bala. Geometry and topology. [s.l.] : Cambridge University Press, 2005. 196 s. ISBN 9780521848893. S. 63, 64. (anglicky) 
  2. 2,0 2,1 LEUNG, Kam-tim. Linear algebra and geometry. [s.l.] : Hong Kong University Press, 1974. 309 s. ISBN 9780856561115. Kapitola 3.9, s. 96. (anglicky) 
  3. TARRIDA, Agustí Reventós. Affine Maps, Euclidean Motions and Quadrics. [s.l.] : Springer, 2011. 458 s. Definice 1.1. ISBN 9780857297099. S. 1. (anglicky) 
  4. PRASOLOV, Viktor Vasilevich; TIKHOMIROV, Vladimir Mikhailovich. Geometry. [s.l.] : AMS, 2001. 257 s. Definice 5. ISBN 9780821820384. S. 20. (anglicky)