Vážení zákazníci a čtenáři – od 28. prosince do 2. ledna máme zavřeno.
Přejeme Vám krásné svátky a 52 týdnů pohody a štěstí v roce 2025 !

Integrální rovnice

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (1 revizi)
(+ Masivní vylepšení)
Řádka 1: Řádka 1:
-
{{Wikipedia-cs|Integrální rovnice|700}}
+
'''Integrální rovnice''' je v [[Matematika|matematice]] taková [[rovnice]], v níž se neznámá [[Funkce (matematika)|funkce]] nachází pod [[Integrál|integrálem]]. Integrální rovnice úzce souvisejí s [[Diferenciální rovnice|diferenciálními rovnicemi]] a některé problémy mohou být formulovány oběma způsoby (např. [[Maxwellovy rovnice]]).
 +
Za zakladatele teorie integrálních rovnic se považuje [[Erik Ivar Fredholm]], později k ní významně přispěl italský matematik Vito Volterra (1860–1940).
 +
 +
== Klasifikace integrálních rovnic ==
 +
Integrální rovnice lze rozdělit na dvě základní třídy: [[Fredholmova integrální rovnice|Fredholmovy integrální rovnice]] a [[Volterrova integrální rovnice|Volterrovy integrální rovnice]]. U Fredholmových rovnic má [[Interval (matematika)|interval]] integrace konstantní hranice, u Volterrových rovnic je pak jedna z hranic funkcí proměnné ''x''.
 +
 +
Další dělení je na rovnice prvního a druhého druhu. V rovnicích prvního druhu se neznámá funkce nachází jen pod [[Integrál|integrálem]], v rovnicích druhého druhu se nachází pod integrálem i mimo integrál.
 +
 +
=== Fredholmovy rovnice prvního druhu ===
 +
Nejzákladnějším typem integrálních rovnic jsou Fredholmovy rovnice prvního druhu. Jsou to integrální rovnice tvaru
 +
 +
:<math> f(x) = \int_a^b K(x,t)\,\varphi(t)\,dt, </math>
 +
 +
kde <math>\varphi</math> je neznámá funkce, ''f'' je známá funkce a ''K'' je další funkce o dvou proměnných, často nazývaná také jaderná funkce. Rozsah integrace má konstantní hranice.
 +
 +
=== Fredholmovy rovnice druhého druhu ===
 +
Fredholmovy rovnice druhého druhu jsou rovnice s konstantním rozsahem integrace a s neznámou funkcí nacházející se jak v integrandu, tak i mimo něj. Jsou to integrální rovnice tvaru
 +
 +
:<math> \varphi(x) =  f(x)+ \lambda \int_a^b K(x,t)\,\varphi(t)\,dt. </math>
 +
 +
Číslo <math>\lambda</math> je neznámý parametr, který hraje stejnou roli jako [[vlastní číslo]] v [[Lineární algebra|lineární algebře]]. Význam ostatních symbolů je stejný, jako u rovnic prvního druhu.
 +
 +
=== Volterrovy rovnice prvního druhu ===
 +
Volterrovy rovnice prvního druhu jsou zobecněním Fredholmových rovnic prvního druhu, ve kterém je jedna z hranic integračního rozsahu funkcí proměnné ''x''. Volterrovy rovnice prvního druhu mají tvar:
 +
 +
:<math> f(x) = \int_a^x K(x,t)\,\varphi(t)\,dt.</math>
 +
 +
=== Volterrovy rovnice druhého druhu ===
 +
Volterrovy rovnice druhého druhu jsou zobecněním Fredholmových rovnic druhého druhu. Jedna z hranic integračního rozsahu je funkcí proměnné ''x''. Rovnice tohoto typu mají tvar:
 +
 +
:<math> \varphi(x) = f(x) + \lambda \int_a^x K(x,t)\,\varphi(t)\,dt. </math>
 +
 +
== Externí odkazy ==
 +
 +
 +
{{Článek z Wikipedie}}
 +
[[Kategorie:Matematická analýza]]
[[Kategorie:Integrální počet]]
[[Kategorie:Integrální počet]]

Verze z 30. 8. 2014, 23:37

Integrální rovnice je v matematice taková rovnice, v níž se neznámá funkce nachází pod integrálem. Integrální rovnice úzce souvisejí s diferenciálními rovnicemi a některé problémy mohou být formulovány oběma způsoby (např. Maxwellovy rovnice).

Za zakladatele teorie integrálních rovnic se považuje Erik Ivar Fredholm, později k ní významně přispěl italský matematik Vito Volterra (1860–1940).

Obsah

Klasifikace integrálních rovnic

Integrální rovnice lze rozdělit na dvě základní třídy: Fredholmovy integrální rovnice a Volterrovy integrální rovnice. U Fredholmových rovnic má interval integrace konstantní hranice, u Volterrových rovnic je pak jedna z hranic funkcí proměnné x.

Další dělení je na rovnice prvního a druhého druhu. V rovnicích prvního druhu se neznámá funkce nachází jen pod integrálem, v rovnicích druhého druhu se nachází pod integrálem i mimo integrál.

Fredholmovy rovnice prvního druhu

Nejzákladnějším typem integrálních rovnic jsou Fredholmovy rovnice prvního druhu. Jsou to integrální rovnice tvaru

<math> f(x) = \int_a^b K(x,t)\,\varphi(t)\,dt, </math>

kde <math>\varphi</math> je neznámá funkce, f je známá funkce a K je další funkce o dvou proměnných, často nazývaná také jaderná funkce. Rozsah integrace má konstantní hranice.

Fredholmovy rovnice druhého druhu

Fredholmovy rovnice druhého druhu jsou rovnice s konstantním rozsahem integrace a s neznámou funkcí nacházející se jak v integrandu, tak i mimo něj. Jsou to integrální rovnice tvaru

<math> \varphi(x) = f(x)+ \lambda \int_a^b K(x,t)\,\varphi(t)\,dt. </math>

Číslo <math>\lambda</math> je neznámý parametr, který hraje stejnou roli jako vlastní číslo v lineární algebře. Význam ostatních symbolů je stejný, jako u rovnic prvního druhu.

Volterrovy rovnice prvního druhu

Volterrovy rovnice prvního druhu jsou zobecněním Fredholmových rovnic prvního druhu, ve kterém je jedna z hranic integračního rozsahu funkcí proměnné x. Volterrovy rovnice prvního druhu mají tvar:

<math> f(x) = \int_a^x K(x,t)\,\varphi(t)\,dt.</math>

Volterrovy rovnice druhého druhu

Volterrovy rovnice druhého druhu jsou zobecněním Fredholmových rovnic druhého druhu. Jedna z hranic integračního rozsahu je funkcí proměnné x. Rovnice tohoto typu mají tvar:

<math> \varphi(x) = f(x) + \lambda \int_a^x K(x,t)\,\varphi(t)\,dt. </math>

Externí odkazy