Přejeme Vám krásné svátky a 52 týdnů pohody a štěstí v roce 2025 !
Trigonometrie
Z Multimediaexpo.cz
m (1 revizi) |
(+ Masivní vylepšení) |
||
Řádka 1: | Řádka 1: | ||
- | + | '''Trigonometrie''' (z řeckého ''trigónon'', trojúhelník a ''metrein'', měřit) je oblast [[goniometrie]] zabývající se užitím [[goniometrická funkce|goniometrických funkcí]] při řešení úloh o [[trojúhelník|trojúhelnících]]. Trigonometrie se dělí na [[trigonometrie rovinná|trigonometrii rovinnou]] a na [[trigonometrie sférická|trigonometrii sférickou]] (trigonometrie útvarů na kulové ploše). Trigonometrie má základní význam při [[triangulace|triangulaci]], která se používá k měření vzdáleností mezi dvěma [[hvězda]]mi, v [[geodézie|geodézii]] k měření vzdálenosti dvou bodů a v [[satelitní navigační systém|satelitních navigačních systémech]]. V angličtině se trigonometrie a [[goniometrie]] souhrnně označuje jako ''trigonometry''. | |
+ | == Historie trigonometrie == | ||
+ | [[Soubor:Leonhard_Euler_by_Handmann.png|thumb|200px|Leonhard Euler, zakladatel moderní trigonometrie]] | ||
+ | |||
+ | První poznatky z trigonometrie lze prokázat již u [[Egypt|Egypťanů]]. Podobné znalosti měli také Babyloňané a Chaldejci, od kterých převzali [[Řekové]] dnešní dělení [[úhel|plného úhlu]] na 360° a [[Stupeň (úhel)|stupně]] na 60 [[minuta|minut]]. První práce o trigonometrii souvisely s problémem určení délky [[Tětiva (geometrie)|tětivy]] vzhledem k velikosti [[úhel|úhlu]]. První tabulky délek [[Tětiva (geometrie)|tětiv]] pocházejí od řeckého matematika Hipparcha z roku 140 př. n. l., další tabulky sepsal zhruba o 40 let později Melenaus, řecký matematik žijící v [[Řím]]ě. Práce starořeckých vědců vyvrcholila Ptolemaiovým dílem ''Megale syntaxis (Velká soustava)'', v níž Klaudios Ptolemaios vypočítal tabulku délek tětiv [[kružnice]], jež měla poloměr až 60 [[délková jednotka|délkových jednotek]] a kde [[úhel|středový úhel]], k němuž se délky vztahovaly, postupoval po 0,5°. | ||
+ | |||
+ | Od 5. století začali pak trigonometrii budovat [[Indové]], od kterých pochází dnešní název pro [[sinus]], a po nich vědci Střední Asie a Arabové. Z Indů se trigonometrii nejvíce věnoval Brahmagupta (7. století), z vědců [[střední východ|Střední Asie]] a [[Arabský poloostrov|Arábie]] je pak třeba vzpomenout [[Sýrie|syrského]] [[Astronomie|astronoma]] al-Battáního. | ||
+ | |||
+ | [[Evropa]] se s trigonometrií seznámila díky západním [[Arabové|Arabům]]. K rozvoji trigonometrie významně přispěl [[Polsko|polský]] [[astronomie|astronom]] Mikuláš Koperník, stejně tak i [[Francie|francouzský]] [[matematika|matematik]] François Viète, který představil [[kosinová věta|kosinovou větu]] v trigonometrické podobě. Dnešní podobu trigonometrie jakožto vědu o [[goniometrická funkce|goniometrických funkcích]] ve svém díle ''Introductio in analysin infinitorum (Úvod do analýzy)'' vytvořil Leonhard Euler (1707–1783). Poprvé zkoumal hodnoty sin ''x'', cos ''x'' jako [[číslo|čísla]], nikoli jako [[úsečka|úsečky]], a jako [[hodnota|hodnoty]] [[proměnná|proměnné]] připouštěl kladná i záporná čísla. | ||
+ | |||
+ | == Trigonometrické věty a vzorce == | ||
+ | * [[Sinová věta]]: Pro každý [[trojúhelník]] ABC s vnitřními [[úhel|úhly]] α, β, γ a stranami ''a'', ''b'', ''c'' platí: | ||
+ | : <math>\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}</math>. | ||
+ | |||
+ | * [[Kosinová věta]]: Pro každý [[trojúhelník]] ABC s vnitřními [[úhel|úhly]] α, β, γ a stranami ''a'', ''b'', ''c'' platí: | ||
+ | : <math>a^2 = b^2 + c^2 - 2 b c \cdot \cos \alpha</math> | ||
+ | |||
+ | * [[Tangentová věta]]: Pro každý [[trojúhelník]] ABC s vnitřními [[úhel|úhly]] α, β, γ a stranami ''a'', ''b'', ''c'' platí: | ||
+ | : <math>\frac{a-b}{a+b}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{tg}\, \frac{\alpha +\beta }{2}}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{cotg}\, \frac{\gamma }{2}}</math> | ||
+ | |||
+ | * Pro obsah každého [[trojúhelník]]u ABC s vnitřními úhly α, β, γ a se stranami ''a'', ''b'', ''c'' platí: | ||
+ | : <math>S=\frac{1}{2}ab\,\sin(\gamma)=\frac{1}{2}ac\,\sin(\beta)=\frac{1}{2}bc\,\sin(\alpha)</math> | ||
+ | |||
+ | * Pro poloměr ''r'' [[kružnice opsaná|kružnice opsané]] [[trojúhelník]]u ABC platí: | ||
+ | : <math>r=\frac{a}{2\sin \alpha}=\frac{b}{2\sin \beta}=\frac{c}{2\sin \gamma}</math> | ||
+ | |||
+ | == Související články == | ||
+ | * [[Goniometrie]] | ||
+ | * [[Goniometrická funkce]] | ||
+ | |||
+ | == Externí odkazy == | ||
+ | * [http://www.karlin.mff.cuni.cz/~robova/stranky/motyckova/Stranky_s_aplety/index.html Učebnice goniometrie a trigonometrie] | ||
+ | * [http://vedci.wz.cz/historie/16.htm Historie trigonometrie] | ||
+ | * [http://mat.fsv.cvut.cz/lakoma/Vyuka/Sferickatrigonometrie03.doc Sférická trigonometrie v kartografii a astronomii] - ve formátu DOC (244 kB) | ||
+ | |||
+ | |||
+ | {{Commonscat|Trigonometry}}{{Článek z Wikipedie}} | ||
[[Kategorie:Goniometrie]] | [[Kategorie:Goniometrie]] | ||
[[Kategorie:Trojúhelník]] | [[Kategorie:Trojúhelník]] |
Verze z 3. 2. 2015, 12:14
Trigonometrie (z řeckého trigónon, trojúhelník a metrein, měřit) je oblast goniometrie zabývající se užitím goniometrických funkcí při řešení úloh o trojúhelnících. Trigonometrie se dělí na trigonometrii rovinnou a na trigonometrii sférickou (trigonometrie útvarů na kulové ploše). Trigonometrie má základní význam při triangulaci, která se používá k měření vzdáleností mezi dvěma hvězdami, v geodézii k měření vzdálenosti dvou bodů a v satelitních navigačních systémech. V angličtině se trigonometrie a goniometrie souhrnně označuje jako trigonometry.
Obsah |
Historie trigonometrie
První poznatky z trigonometrie lze prokázat již u Egypťanů. Podobné znalosti měli také Babyloňané a Chaldejci, od kterých převzali Řekové dnešní dělení plného úhlu na 360° a stupně na 60 minut. První práce o trigonometrii souvisely s problémem určení délky tětivy vzhledem k velikosti úhlu. První tabulky délek tětiv pocházejí od řeckého matematika Hipparcha z roku 140 př. n. l., další tabulky sepsal zhruba o 40 let později Melenaus, řecký matematik žijící v Římě. Práce starořeckých vědců vyvrcholila Ptolemaiovým dílem Megale syntaxis (Velká soustava), v níž Klaudios Ptolemaios vypočítal tabulku délek tětiv kružnice, jež měla poloměr až 60 délkových jednotek a kde středový úhel, k němuž se délky vztahovaly, postupoval po 0,5°.
Od 5. století začali pak trigonometrii budovat Indové, od kterých pochází dnešní název pro sinus, a po nich vědci Střední Asie a Arabové. Z Indů se trigonometrii nejvíce věnoval Brahmagupta (7. století), z vědců Střední Asie a Arábie je pak třeba vzpomenout syrského astronoma al-Battáního.
Evropa se s trigonometrií seznámila díky západním Arabům. K rozvoji trigonometrie významně přispěl polský astronom Mikuláš Koperník, stejně tak i francouzský matematik François Viète, který představil kosinovou větu v trigonometrické podobě. Dnešní podobu trigonometrie jakožto vědu o goniometrických funkcích ve svém díle Introductio in analysin infinitorum (Úvod do analýzy) vytvořil Leonhard Euler (1707–1783). Poprvé zkoumal hodnoty sin x, cos x jako čísla, nikoli jako úsečky, a jako hodnoty proměnné připouštěl kladná i záporná čísla.
Trigonometrické věty a vzorce
- Sinová věta: Pro každý trojúhelník ABC s vnitřními úhly α, β, γ a stranami a, b, c platí:
- <math>\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}</math>.
- Kosinová věta: Pro každý trojúhelník ABC s vnitřními úhly α, β, γ a stranami a, b, c platí:
- <math>a^2 = b^2 + c^2 - 2 b c \cdot \cos \alpha</math>
- Tangentová věta: Pro každý trojúhelník ABC s vnitřními úhly α, β, γ a stranami a, b, c platí:
- <math>\frac{a-b}{a+b}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{tg}\, \frac{\alpha +\beta }{2}}=\frac{\mathrm{tg}\, \frac{\alpha -\beta }{2}}{\mathrm{cotg}\, \frac{\gamma }{2}}</math>
- Pro obsah každého trojúhelníku ABC s vnitřními úhly α, β, γ a se stranami a, b, c platí:
- <math>S=\frac{1}{2}ab\,\sin(\gamma)=\frac{1}{2}ac\,\sin(\beta)=\frac{1}{2}bc\,\sin(\alpha)</math>
- Pro poloměr r kružnice opsané trojúhelníku ABC platí:
- <math>r=\frac{a}{2\sin \alpha}=\frac{b}{2\sin \beta}=\frac{c}{2\sin \gamma}</math>
Související články
Externí odkazy
- Učebnice goniometrie a trigonometrie
- Historie trigonometrie
- Sférická trigonometrie v kartografii a astronomii - ve formátu DOC (244 kB)
|
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |