Afinní prostor

Z Multimediaexpo.cz

Afinní prostor je v geometrii prostor, na kterém je definováno sčítání bodů a vektorů.[1] Slouží jako model pro afinní geometrii.[2] Jedná se o zobecnění eukleidovského prostoru.

Obsah

Definice

Afinní prostor je množina <math>A</math> spolu se zobrazením

<math>+\colon\,\, V \times A\to A,\quad (v, a) \mapsto v + a</math>

kde <math>V</math> je vektorový prostor, které má následující vlastnosti:[3][4]

1. Pro každé a v A platí <math>0+a = a\quad</math>, kde <math>0\in V</math> je nulový vektor
2. Pro každé v, w ve V a a v A platí <math>v+(w+a) = (v+w)+a\,</math>,
3. Pro každé a v A, zobrazení <math>V \to A,\quad v \mapsto v + a\quad</math> je bijekce.

Volbou počátku <math>a\in A</math> je možné identifikovat A s vektorovým prostorem V zobrazením <math>a+v\mapsto v</math>. Naopak, každý vektorový prostor V je afinní prostor nad sebou samým.

Afinní geometrie

Afinní prostor je úzce spojen s afinní geometrií.[2] Na afinním prostoru jsou definovány úsečky, přímky, poměry velikostí úseček, nikoli však vzdálenosti bodů nebo úhly vektorů.

Literatura

Česká

  • BICAN, Ladislav. Lineární algebra a geometrie. [s.l.] : Academia, 2002. ISBN 80-200-0843-8. Kapitola Afinní prostor. (česky) 

Reference

  1. REID, Miles A.; SZENDRŐI, Bala. Geometry and topology. [s.l.] : Cambridge University Press, 2005. 196 s. ISBN 9780521848893. S. 63, 64. (anglicky) 
  2. 2,0 2,1 LEUNG, Kam-tim. Linear algebra and geometry. [s.l.] : Hong Kong University Press, 1974. 309 s. ISBN 9780856561115. Kapitola 3.9, s. 96. (anglicky) 
  3. TARRIDA, Agustí Reventós. Affine Maps, Euclidean Motions and Quadrics. [s.l.] : Springer, 2011. 458 s. Definice 1.1. ISBN 9780857297099. S. 1. (anglicky) 
  4. PRASOLOV, Viktor Vasilevich; TIKHOMIROV, Vladimir Mikhailovich. Geometry. [s.l.] : AMS, 2001. 257 s. Definice 5. ISBN 9780821820384. S. 20. (anglicky)