Laurentova řada
Z Multimediaexpo.cz
Laurentova řada je řada ve tvaru <math>\sum_{n=-\infty}^\infty a_n (z - z_0)^n </math>, kde <math>(a_n)_{n=-\infty}^\infty</math> je posloupnost komplexních čísel a <math> z_0 \in C </math>.
Definice
Řada tvaru
<math>\sum_{n=-\infty}^\infty a_n (z - z_0)^n = \cdots + \frac{a_{-2}}{(z-z_0)^2} + \frac{a_{-1}}{z-z_0} + a_0 + a_1 (z-z_0) + a_2 (z-z_0)^2 + \cdots </math>
kde <math>(a_n)_{n=-\infty}^\infty</math> je posloupnost komplexních čísel a <math> z_0 \in C </math> se nazývá Laurentova řada se středem v bodě <math> z_0 </math> a koeficienty <math>(a_n)_{n=-\infty}^\infty</math>.
Řada <math>\sum_{n=0}^\infty a_n (z - z_0)^n </math> je pak regulární částí Laurentovy řady a <math>\sum_{n=-\infty}^{-1} a_n (z - z_0)^n </math> je pak hlavní část Laurentovy řady.
Konvergence
Laurentova řada konverguje v daném bodě <math> z_0 </math> konverguje-li současně v tomto bodě její hlavní i regulární část.
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |