Bílá krvinka

Z Multimediaexpo.cz

Zleva: Červená krvinka, krevní destička a bílá krvinka

Bílá krvinka či leukocyt je krevní buňka mnohých živočichů, které se obvykle podílí na fungování imunitního systému. Bílé krvinky zpravidla mají schopnost bojovat proti virům, bakteriím a jiným patogenům či částicím, ale i nádorovým buňkám a vůbec všem organismu cizím materiálům. Existuje mnoho typů bílých krvinek. U většiny živočichů se vyskytují zejména tzv. fagocytární buňky, schopné jednoduchých a nespecifických způsobů obrany proti choroboplodným zárodkům. U člověka k této nespecifické obraně patří například makrofágy nebo neutrofily. U většiny obratlovců se vyskytuje i druhý typ bílých krvinek, a to tzv. lymfocyty, které vyvíjí rafinovanější metody vyhledání a usmrcení patogenních organizmů či nádorových buněk. V lidské krvi je asi 7,4×109 bílých krvinek na litr krve, tedy mnohem méně než červených krvinek; zrají především v kostní dřeni, ale dále také v brzlíku i jinde. Pokud bílé krvinky nefungují tak, jak mají, může to vyvolat vážná onemocnění, spadající do kategorie autoimunity či imunitních nedostatečností.

Obsah

Evoluce

Fagocytární buňky má mnoho různých živočichů, ale pravé lymfocyty, představující specifickou (adaptivní) imunitu, se vyvinuly zřejmě až u čelistnatců, jako je tento vyhynulý pancířnatec rodu Dunkleosteus

Imunita se rozvíjela v rámci živočišné říše velice pozvolna a i organizmy, které nemají imunitní buňky, mají do jisté míry rozvinutý imunitní systém schopný rozlišovat cizí od svého. Imunita zprostředkovaná buňkami však na druhou stranu není vlastnost vyhrazená pouze člověku; s bílými krvinkami se setkáváme nejen u všech obratlovců, ale i u mnohých bezobratlých živočichů.[1] Ale i u primitivních organizmů, jako jsou améby, byly odhaleny zvláštní buňky pohybující se uvnitř masy améboidních buněk a odstraňující patogenní bakterie.[2] Nejčastěji se bílé krvinky u bezobratlých omezují na fagocytující buňky, které se pohybují uvnitř těla živočichů, v cévách či tkáních, a zajišťují tzv. nespecifickou (vrozenou) imunitu. V tom představují předky lidských makrofágů.[1] Byly nalezeny u většiny živočichů, od primitivních houbovců, přes hmyz až k obratlovcům.[3][4] Z tohoto přehledu je tedy jasné, že kořeny nespecifické buněčné imunity se dají vystopovat hluboko do historie živočišné říše. Co se týče tzv. specifické čili adaptivní imunity, která je představována především T-lymfocyty a B-lymfocyty, tam je situace poněkud odlišná. Nepochybně spolupracuje s imunitou vrozenou a má s ní mnoho společných rysů. Obecně se uvádí, že se poprvé vyvinula u nejstarších čelistnatých obratlovců: všichni čelistnatci (Gnathostomata), tedy obratlovci bez mihulí a sliznatek, mají podobné T-buněčné a B-buněčné receptory, MHC komplexy, ale probíhá u nich i unikátní jev označovaný V(D)J rekombinace.[5] Situace u mihulí a sliznatek je poněkud nejasná, zvláště proto, že buňky nerozeznatelné od lymfocytů u nich jsou opakovaně nalézány, a navíc se objevují studie, které popisují určitý způsob rekombinace genů pro povrchové struktury, odlišný od V(D)J rekombinace. Zřejmě však nemají zmíněné TCR, BCR a MHC komplexy.[6][5]

Stavba buněk

Mikrofotografie bílé krvinky známé jako eosinofil, pořízená transmisním elektronovým mikroskopem. Patrné jsou kulovité váčky (granula) obsahující uvnitř světlý krystaloidový vnitřek; buněčné jádro je dvoulaločné a umístěné v spodní části buňky

Bílá krvinka čili leukocyt je vlastně sběrný termín popisující původně ty krevní buňky, které mají ve srovnání s červenými krvinkami světlejší barvu.[7] Bílých krvinek známe mnoho druhů, jednotlivé typy se od sebe liší velikostí, tvarem jádra, vývojem i způsobem, jakým se podílejí na obraně organismu. Všechny ale mají několik společných znaků. Bílé krvinky jsou plnohodnotné a vcelku typické eukaryotické buňky. Ačkoliv všechny mají stejný původ z hematopoetické kmenové buňky, například monocyty dosahují rozměrů někdy až 30 mikrometrů,[8] zatímco třeba některé lymfocyty mohou mít v průměru pouhých 6 mikrometrů.[9] Bílé krvinky známé jako granulocyty mají obvykle jádro nepravidelného tvaru. Mladé nezralé granulocyty bývají tyčkovitého a různě pokřiveného tvaru. Dospělé granulocyty ve stadiu zralosti jsou laločnaté či dokonce segmentované (dělené na několik často propojených segmentů).[10] Konkrétně například eosinofilní granulocyty mívají jádra dvoulaločnatá, neutrofily mají jádra mnoholaločnatá, jádra monocytů jsou obvykle jednolaločnatá či ledvinitá, a podobně.[11] Naopak jádra lymfocytů, tedy malých bílých krvinek řazených mezi tzv. agranulocyty, jsou přibližně kulovitá a zabírají většinu cytoplazmy. V textu se již objevily termíny granulocyt a agranulocyt. Dalším rysem mnoha bílých krvinek totiž jsou tzv. granula, čili vnitrobuněčné váčky ohraničené membránou. Granulocyty granula mají, agranulocyty jich mají málo nebo je nemají vůbec.[10] Podle toho, jak se granula jednotlivých granulocytů barví, se rozlišují bazofily (barví se modře zásaditou methylenovou modří), eosinofily (barví se červeně kyselými barvivy – eosinem) a neutrofily (barví se oběma typy barviv fialově).[12] Granula však mají například i makrofágy.[13] Co se týče ostatních organel, bílé krvinky mají podobnou výbavu jako ostatní buňky živočišných těl. Udává se, že některé malé lymfocyty mají zakrnělé endoplazmatické retikulum a Golgiho aparát a pouze několik málo mitochondrií,[12] ale na druhou stranu mívají mnoho ribozomů. Makrofágy a monocyty naopak mají velké množství lysozomů účastnících se v buněčném trávení, hodně mitochondrií, stejně jako silně rozvinuté endoplazmatické retikulum a Golgiho aparát.[13]

Funkce

Podrobnější informace naleznete v článcích: imunitní systém a imunita (biologie).

Všechny bílé krvinky hrají roli ve vytváření imunitního systému, který zajišťuje imunitu, tedy obranyschopnost živočichů proti různých negativním elementům prostředí, jako jsou patogenní organizmy či nádorové buňky. Bílé krvinky jsou v mnohých případech pohyblivé buňky a na podložce jsou schopné améboidního pohybu. Mají schopnost přilnout k různým povrchům nebo třeba opustit krevní řečiště a vycestovat do okolní tkáně (proces diapedézy leukocytů). Tzv. buněčná imunita se vyskytuje u různých bezobratlých či obratlovců v různých obměnách a může se projevovat jako fagocytóza (pohlcení a strávení) cizorodých částic, enkapsulace (uzavření patogenu do váčku, určité uzliny a podobně), cytotoxické účinky bílých krvinek (v podstatě usmrcení jiné buňky), srážení krve nebo hemolymfy, a mnohé další.[14] U člověka a mnohých dalších obratlovců se dá imunitní systém obecně podle funkce rozdělit na vrozenou a specifickou obranu. V obou hrají svou roli bílé krvinky. Ve vrozené imunitě se uplatňují všechny druhy granulocytů a navíc NK buňky; adaptivní (specifická) imunita je doménou lymfocytů. Vrozená imunita se soustředí na náhodné vyhledávání patogenů v těle, aktivace tzv. komplementu, odstraňování nalezených patogenů (např. fagocytózou) a v neposlední řadě je vrozená imunita schopna na svých MHC komplexech „vystavovat“ antigen a tím aktivovat lymfocyty (specifickou imunitu). Specifická čili adaptivní imunita se pokouší o propracovanější způsob boje proti patogenům a nádorovým buňkám, a to několika způsoby. Předně rozeznává antigeny na MHC komplexech; dále vyvíjí metody „ušité na míru“ proti konkrétní bakterii či viru; a konečně, je také schopná tzv. imunologické paměti pro případ, že by se nákaza opakovala.[1]

The media player is loading... Prehravac se nahrava...

Makrofágy pohlcující konidie
patogenních hub, čas 2,5 hodiny

Parametry

Počet

Bílé krvinky jsou stálou součástí krve ale jejich množství poměrně výrazně kolísá. V 1 mm3 (1 mikrolitr) se u zdravého dospělého člověka pohybuje přibližně od 4 500 do 10 000[15] bílých krvinek bez ohledu na jejich konkrétní typ. Průměrný počet bílých krvinek na jeden mikrolitr krve se u člověka uvádí 7 400 na 1 mm3,[11] tedy 7,4×109 na litr krve. Z celkového objemu lidské krve (cca 4,5 litru) zaujímají bílé krvinky pouhé 1%, zatímco červené krvinky představují asi 45%.[16] Koncentrace bílých krvinek však je poměrně proměnlivá, mnohem více než počet červených krvinek. Je ovlivněna denní dobou (ráno méně, odpoledne více), fyzickou aktivitou (počty stoupají po fyzickém výkonu), ale více bílých krvinek v těle je i během horkého počasí, za intenzívního slunečního záření, při sníženém množství kyslíku v ovzduší, a podobně. Pohlaví má minimální vliv.[17] U ostatních živočichů jsou samozřejmě počty velice odlišné. Ptáci mají v krvi poněkud vyšší koncentraci leukocytů: například u bažanta obecného bylo zjištěno v jednom mm3 asi 8 000–24 000 leukocytů (nižší hranice v březnu, vyšší hranice v listopadu).[18] U papoušků se udává pruměrně 5000–15 000 buněk/mm3, ale u větších druhů byly zaznamenány hodnoty blížící se 25 000.[19] V krvi želvy tereky velké (Podocnemis expansa) je ve stejném objemu pouhých jen asi 6000–9000 bílých krvinek.[20] Pro zajímavost je ještě možné uvést rybu hrdložábříka bílého (Monopterus albus), jenž má v 1 mm3 12 000–17 000 bílých krvinek.[21] Počet bílých krvinek zjevně neodpovídá žádným jednoduchým pravidlům.

Diferenciální rozpočet leukocytů

Zastoupení jednotlivých typů bílých krvinek v krvi (u člověka)

Zjištění přesného zastoupení jednotlivých typů leukocytů v krvi (tzv. diferenciální rozpočet leukocytů, často jen diferenciál) je mnohdy důležité pro stanovení diagnózy, neboť změněné poměry mohou být příznakem infekčních onemocnění (tyfus, AIDS a mnoho dalších). Opět jsou významné rozdíly napříč živočišnou říší, níže je uvedena diferenciální diagnóza pro člověka v porovnání s podobnou statistikou pro kapra obecného a pro bažanta obecného. U člověka je evidentně v krvi nejvíce neutrofilů (tvoří až 2/3 všech bílých krvinek), na druhém místě jsou různé druhy lymfocytů. Ostatní leukocyty ve srovnání s těmito dvěma buněčnými typy jsou spíše vzácné.

Druh leukocytů člověk (%)[17] kapr obecný,  (%)[22] bažant obecný (%, v září)[18]
neutrofil/heterofil 57–67 15,5 26,1
eosinofil 1–3 1,9 1,6
bazofil 0–1  ? 3,2
lymfocyt 24–40 81,5 66,1
monocyt 3–8 2,4 3,0

Tvorba

V procesu tvorby krve vzniká velké množství různých buněčných typů, velká část z nich se řadí mezi bílé krvinky
Podrobnější informace naleznete na stránce: krvetvorba

Leukopoéza, tedy tvorba bílých krvinek v těle, je nezbytná k udržení stabilního počtu imunitních buněk v těle. Je zpravidla součástí širšího procesu krvetvorby. V některé části těla živočicha se totiž zpravidla nachází zásoba kmenových buněk, které se pravidelně dělí a část jejich potomstva se specializuje (diferencuje) na určitý buněčný typ krevních buněk, jako jsou červené krvinky, krevní destičky nebo právě bílé krvinky. U nejjednodušších živočichů je místo leukopoézy v těle stále neznámé a například u houbovců je vznik amébocytů zahalen nejistotou. Zřejmě neprobíhá na nějakém konkrétním místě těla. U živočichů s výraznějším členěním na orgány se však již vznik bílých krvinek soustřeďuje do jednoho místa: coelomocyty kroužkovců vznikají například v určité ohraničené části coelomu, jako například na hrudní a laterální straně pobřišnice v hrudních segmentech. U hlavonožců pro změnu vznikají fagocytární buňky v bílých tělískách za očima. U hmyzu je míst tvorby bílých krvinek buď více, nebo probíhá leukopoéza přímo v lymfě nepřetržitým dělením buněk. Pláštěnci (Urochordata), tedy bezprostřední příbuzní obratlovců, mají již jisté „mízní uzliny“ ve stěně hltanu a na jiných místech těla, u kopinatců se však vše odehrává ve stěně coelomu.[14] U člověka a ostatních obratlovců je situace složitější, vzhledem k tomu, že se u nich objevuje mnohem širší repertoár bílých krvinek, než jen fagocytární buňky. Z pochopitelných důvodů je v centru zájmu tvorba bílých krvinek (leukopoéza) u člověka, odehrávající se především v kostní dřeni a v brzlíku. To je však velmi podobné situaci u ostatních obratlovců a zejména savců. Jednou z výjimek jsou ptáci, u nichž probíhá část leukopoézy (konkrétně zrání B-lymfocytů) v tzv. Fabriciově burze a nikoliv v brzlíku.[23] Z počátku je vznik bílých krvinek u člověka těsně svázán s tvorbou ostatních buněčných součástí krve, jako jsou červené krvinky a krevní destičky. Všechny tři typy krevních elementů vznikají z jednoho druhu kmenových (či někdy spíše progenitorových) buněk, označovaných termínem hematopoetická kmenová buňka a nacházejících se v kostní dřeni. Tyto buňky mají schopnost pluripotence, neboť dávají vzniknout několika buněčným typům. Tyto kmenové buňky se mnohonásobně dělí a některé z nich se diferencují na konkrétní typy krevních elementů. Vznikají dva hlavní typy krevních progenitorových buněk:[1]

Rozdělení

V cytoplazmě některých typů bílých krvinek byly nalezeny tzv. specifická granula. Podle přítomnosti nebo absence těchto granul se bílé krvinky rozdělují na:

Přehled bílých krvinek člověka

Typ Vzhled Diagram Přibliž. % zastoupení
u dospělých[24]
Průměr (μm)[24] Funkce[16] Typ jádra Granula[16] Doba života
buňky[24]
Neutrofil PBNeutrophil.jpg Neutrophil.png 54–62%[25] 10–12 mnoholaločnaté jemná, světle růžová pomocí barvení HE 6 hodin
(ale déle v slezině a dalších tkáních)
Eosinofil    Eosinophil.png 1–6% 10–12 dvoulaločnaté růžovočervená pomocí barvení HE 8–12 dní (v oběhu však několik hodin)
Bazofil PBBasophil.jpg Basophil.png <1% 12–15 dvou- či trojlaločnaté velká modrá Hodiny až dny[26]
Lymfocyt Lymphocyte2.jpg 75px 25–33% 7–8 silně barvitelné, mimo střed buňky přítomna u NK buněk a CD8+ T buněk týdny až roky
Monocyt Monocyte.png 2–8% 14–17 Migruje z krve do dalších tkání a diferencuje se na makrofágy či dendritické buňky ledvinovité žádná hodiny až dny
Makrofág Macrophage.jpg Macrophage.png 21 (u člověka)[27] Fagocytóza zbytků buněk a patogenů a stimulace lymfocytů či dalších buněk aktivní v řádu dnů
nedospělé měsíce i roky
Dendritická buňkaDendritic cell.JPG Dendritic Cell ZP.png 7[28] Antigen prezentující buňka (APC) aktivuje T-lymfocyty podobně jako makrofág

Onemocnění

S bílými krvinkami je úzce svázáno několik onemocnění, nejlépe jsou tyto poruchy prostudovány u hospodářských zvířat a samozřejmě u člověka. V tomto ohledu se běžně používá několik termínů. Leukopenie popisuje stav, kdy dojde k poklesu počtu bílých krvinek v těle. Obvykle dojde k poklesu jen určité skupiny bílých krvinek – z tomu se používají termíny jako lymfocytopenie (málo lymfocytů), neutropenie (málo neutrofilů), eosinopenie (málo eosinofilů) či basopenie (málo basofilů). Opačný problém je leukocytóza, při níž je v krvi přítomno zvýšené množství bílých krvinek: opět se rozlišuje lymfocytóza, neutrofilie, eosinofilie a basofilie. Leukostáze je koagulace bílých krvinek. Leukemie je souhrnné označení pro několik akutních a chronických nádorových onemocnění, které vznikají rakovinným bujením tkáně, z níž vznikají bílé krvinky.

Reference

  1. 1,0 1,1 1,2 1,3 Jakeway, Charles A., et al. Immunobiology. 5. vyd. [s.l.] : Garland Science, 2001. Dostupné online.  
  2. CHEN, Guokai, Olga Zhuchenko, Adam Kuspa Immune-like phagocyte activity in the social amoeba. Science (New York, N.Y.), 2007-08-03, roč. 317, čís. 5838, s. 678-681. Dostupné online [cit. 2009-11-01]. ISSN 1095-9203. DOI:10.1126/science.1143991.  
  3. DELVES, P. J.; MARTIN, S. J.; BURTON, D. R.. Roitt's Essential Immunology. 11th. vyd. Malden, MA : Blackwell Publishing, 2006. ISBN 1405136030.  
  4. Hanington PC, Tam J, Katzenback BA, Hitchen SJ, Barreda DR, Belosevic M. Development of macrophages of cyprinid fish. Dev. Comp. Immunol., April 2009, roč. 33, čís. 4, s. 411–29. Dostupné online [cit. April 5, 2009]. DOI:10.1016/j.dci.2008.11.004. PMID 19063916.  
  5. 5,0 5,1 LIANG, Jiao, Xin Liu, Fen-Fang Wu, Qing-Wei Li [Progress of adaptive immunity system of agnathan vertebrates]. Yi Chuan = Hereditas / Zhongguo Yi Chuan Xue Hui Bian Ji, 2009-10, roč. 31, čís. 10, s. 969-976. Dostupné online [cit. 2009-11-01]. ISSN 0253-9772.  
  6. MAYER, Werner E., Tatiana Uinuk-ool, Herbert Tichy, Lanier A. Gartland, Jan Klein, Max D. Cooper Isolation and characterization of lymphocyte-like cells from a lamprey. Proceedings of the National Academy of Sciences of the United States of America, 2002-10-29, roč. 99, čís. 22, s. 14350-14355. Dostupné online [cit. 2009-11-01]. DOI:10.1073/pnas.212527499.  
  7. Slovníček pojmů [online]. Fakultní nemocnice Brno. Dostupné online.  
  8. Through the Microscope: Blood Cells - Life's Blood [online]. Wadsworth Center; NYS Department of Health. Dostupné online.  
  9. Cellular Components of Blood [online]. SUNY Downstate Medical Center. Dostupné online.  
  10. 10,0 10,1 Atlas hematologie zvířat. Hradec Králové : Střední odborná škola veterinární, Hradec Králové-Kukleny, 2006. Dostupné online.  
  11. 11,0 11,1 11,2 MURRAY, Patrick R.; ROSENTHAL, Ken S.; PFALLER, Michael A.. Medical Microbiology, Fifth edition. [s.l.] : Elsevier, 2005.  
  12. 12,0 12,1 Richard A. Goldsby, Thomas J. Kindt, Barbara A. Osborne. Kuby Immunology. [s.l.] : [s.n.].  
  13. 13,0 13,1 BONILLA, Francisco A.; BONA, Constantin A.. Textbook of immunology. [s.l.] : [s.n.], 1996. Dostupné online. S. 431.  
  14. 14,0 14,1 RATCLIFFE, N.A., et al.. Invertebrate Immunity: Basic Concepts and Recent Advances. In BOURNE, Geoffrey H.. International Review of Cytology. Londýn : Academic Press, 1985. Dostupné online. Svazek 97.
  15. White Blood Cell Count (WBC) and Differential [online]. RnCeus.com. Dostupné online.  
  16. 16,0 16,1 16,2 Alberts, Bruce. Leukocyte functions and percentage breakdown [online]. NCBI Bookshelf, [cit. 2007-04-14]. (Molecular Biology of the Cell.) Dostupné online.  
  17. 17,0 17,1 HAVEL, Jakub. Bílé krvinky a imunita [online]. lf3.cuni.cz. Dostupné online.  
  18. 18,0 18,1 LITERÁK, I; MALÝ. Changes of haematological parameters in common pheasant throughout the year. Veterinární medicína, 2006, roč. 51, s. 29–34. Dostupné online.  
  19. MCDONALD, Scott. Old World Aviaries; The Complete Blood Count [online]. . Dostupné online.  
  20. TAVARES-DIAS, M., A. A Oliveira-Júnior, J. L Marcon Methodological limitations of counting total leukocytes and thrombocytes in reptiles (Amazon turtle, Podocnemis expansa): an analysis and discussion. Acta Amazonica, 2008, roč. 38, s. 351–356. Dostupné online.  
  21. Siripan Ponsen, Nual-Anong Narkkong, Supaporn Pamo, Worapol Aengwanich. Comparative Hematological Values, Morphometric and Morphological Observation of the Blood Cell in Capture and Culture Asian Eel, Monopterus albus (Zuiew). American Journal of Animal and Veterinary Sciences, 2009, roč. 4 (2), s. 32-36. ISSN 1557-4555.  
  22. DARVISH BASTAMI, K., A. Haji Moradlou, A. Mohamadi Zaragabadi, S. Salehi Mir, M. Shakiba Measurement of some haematological characteristics of the wild carp. Comparative Clinical Pathology, 2009, roč. 18, čís. 3, s. 321-323. Dostupné online [cit. 2009-11-14]. DOI:10.1007/s00580-008-0802-7.  
  23. Bursa of Fabricius [online]. MeSH, National Library of Medicine - Medical Subject Headings. Dostupné online.  
  24. 24,0 24,1 24,2 Daniels, Victor G.; Wheater, Paul R.; Burkitt, H. George. Functional histology: a text and colour atlas. Edinburgh : Churchill Livingstone, 1979. ISBN 0-443-01657-7.  
  25. White Blood cells - learning activity [online]. . Dostupné online.  
  26. Body Part - Basophil [online]. bioeng.auckland.ac.nz. Dostupné online.  
  27. Krombach F, Münzing S, Allmeling AM, Gerlach JT, Behr J, Dörger M. Cell size of alveolar macrophages: an interspecies comparison. Environ. Health Perspect., 01. September 1997, roč. 105 Suppl 5, s. 1261–3. ISSN 00916765. DOI:10.2307/3433544. PMID 9400735.  
  28. Diameter of dendritic cell -Human Homo sapiens [online]. Bionumbers. Dostupné online.  

Související články



Flickr.com nabízí fotografie, obrázky a videa k tématu
Bílá krvinka
Commons nabízí fotografie, obrázky a videa k tématu
Bílá krvinka