V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.

Střední hodnota

Z Multimediaexpo.cz


Střední hodnota je nejznámější míra polohy ve statistice. Často se nazývá populační průměr.

Střední hodnota náhodné veličiny \(X\) se značí \(\operatorname{E}X\), \(\operatorname{E}(X)\) nebo také \(\langle X\rangle\).

Obsah

Definice

Střední hodnota je parametr rozdělení náhodné veličiny, který je definován jako vážený průměr daného rozdělení. V řeči teorie míry se jedná o hodnotu

\(\operatorname{E}X = \int_{R} x \mathrm{d}P(x)\),

kde \(P\) je pravděpodobnostní míra určující rozdělení náhodné veličiny \(X\). Pokud výraz na pravé straně nekonverguje absolutně, pak říkáme, že střední hodnota neexistuje.

Speciálně:

\(\operatorname{E}X = \int_{R} x f(x) \mathrm{d}x\).
\(\operatorname{E}X = \sum_{I} s_{i} p_{i}\)

Vlastnosti

Střední hodnota konstanty \(c\) je

\(\operatorname{E}(c)=c\)

Pro střední hodnotu součinu náhodné veličiny \(X\) a konstanty \(c\) platí

\(\operatorname{E}(cX)=c\operatorname{E}(X)\)

Střední hodnota součtu dvou náhodných veličin \(X, Y\) je rovna součtu středních hodnot těchto veličin, tedy

\(\operatorname{E}(X+Y)=\operatorname{E}(X)+\operatorname{E}(Y)\)

Tento vztah lze samozřejmě zobecnit na součet libovolného počtu náhodných veličin.

Pro nezávislé náhodné veličiny \(X, Y\) je střední hodnota součinu těchto veličin rovna součinu jejich středních hodnot, tzn.

\(\operatorname{E}(XY)=\operatorname{E}(X)\operatorname{E}(Y)\)

Tento vztah je možné zobecnit pro součin libovolného počtu vzájemně nezávislých náhodných veličin!

Příklady

Diskrétní náhodná veličina

Mějme náhodnou veličinu, která s pravděpodobností 0,3 nabývá hodnoty 1, s pravděpodobností 0,2 nabývá hodnoty 2 a s pravděpodobností 0,5 nabývá hodnoty 3.

Střední hodnota je pak (0,3 × 1) + (0,2 × 2) + (0,5 × 3) = 2,2.

Spojitá náhodná veličina

Mějme náhodnou veličinu, jejíž hustota pravděpodobnosti je na intervalu <0,1> f(x)=2x , jinde identicky rovna 0. To je rozdělení, v němž je hustota pravděpodobnosti přímo úměrná hodnotě x. Potom střední hodnota je integrálem x*2x na intervalu <0,1>. Výsledkem je střední hodnota 2/3.

Související články