The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Lineární kód

Z Multimediaexpo.cz

Lineární kód je v teorii kódování typem blokového kódu používaným metodami pro detekci a opravu chyb. Lineární kódy umožňují realizaci efektivnějších algoritmů pro kódování a dekódování než jiné kódy.

Obsah

Formální definice

Lineární kód délky n a stupně k je lineární podprostor o rozměru k vektorového prostoru \(\mathbb{F}_q^n\), kde \(\mathbb{F}_q\) je konečné těleso s q prvky. Je-li q = 2, respektive q = 3, daný kód se označuje jako binární kód, respektive ternární kód.

JINAK: Lineární kód je kód, kde lineární kombinace dvou nebo i více kódových slov je opět kódové slovo;

Vlastnosti

Jakožto lineární podprostor vektorového prostoru \(\mathbb{F}_q^n\) může být kód C zcela reprezentován lineárním obalem minimální množiny kódových slov – neboli báze daného vektorového prostoru. Kódová slova této báze bývají obvykle uspořádána do řádků matice G, označované jako generující matice kódu C. Matice G je ve standardním tvaru, platí-li G = (Ik | A), kde Ik je jednotková matice k × k a A je libovolná matice k × (n − k).

Matice \(H: \mathbb{F}_q^n\to \mathbb{F}_q^{n-k}\), jejímž jádrem je C, se nazývá kontrolní matice kódu C. Má-li kód C generující matici G = (Ik | A), pak jeho kontrolní matice odpovídá H = (-At | In-k).

Z definice podprostoru také vyplývá, že minimální Hammingova vzdálenost d mezi libovolným kódovým slovem c0 a jinými kódovými slovy c ≠ c0 je konstantní. Jelikož je rozdíl dvou kódových slov c − c0 z kódu C opět kódovým slovem (tedy prvkem podprostoru C) a zároveň platí d(c, c0) = d(c − c0, 0), je možné vyvodit následující:

\(\min_{c \in C,\ c \neq c_0}d(c,c_0)=\min_{c \in C, c \neq c_0}d(c-c_0, 0)=\min_{c \in C, c \neq 0}d(c, 0)=d.\)

Obvyklé značení

Pro různé druhy kódů se obecně používá písmeno C. Lineární kód délky n, dimenze k (tzn. s k kódovými slovy v bázi, nebo také s k řádky generující matice) a s Hammingovou vzdáleností d se označuje jako kód [nkd].

Příklady

Příklady některých lineárních kódů:

Externí odkazy