The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).


Dovolená : 23. prosinec 2025 — 29. prosinec 2025
Holidays : December 23, 2025 — December 29, 2025

Nerovnosti mezi průměry

Z Multimediaexpo.cz

Nerovnosti mezi průměry v matematice vyjadřují nejčastěji vztah mezi kvadratickým, aritmetickým, geometrickým a harmonickým průměrem nějaké skupiny čísel.

Existují ještě další průměry – zobecněný mocninný (např. odmocninový, kubický), Heronův, aritmeticko-geometrický, logaritmický, harmonicko-kvadratický, kontraharmonický – které lze do nerovností zapsat. Jejich užití je však (kromě Heronova průměru) spíše sporadické.

Vzorec

Označíme-li kvadratický průměr daných kladných čísel jako \(K\), aritmetický průměr \(A\), geometrický průměr \(G\) a harmonický průměr \(H\), pak platí:

\(K \geq A \geq G \geq H\)

Rovnost navíc nastává tehdy a jen tehdy, pokud jsou všechna průměrovaná čísla stejná.

Například pro \(a_1=1\), \(a_2=2\) je:

\(K=\sqrt{2,5} \dot= 1,58 \geq A=1,5 \geq G=\sqrt{2} \dot=1,41 \geq H=1,\overline{3}\)

Nejdůležitější z těchto nerovností je nerovnost aritmetického a geometrického průměru, nazývaná též AG nerovnost.

Související články

Externí odkazy

  • Nerovnosti na stránkách matematického korespondenčního semináře MFF UK