The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Ortonormální báze

Z Multimediaexpo.cz

Ortonormální báze unitárního prostoru je pojem z lineární algebry a funkcionální analýzy označující takovou bázi onoho prostoru, jež je ortogonální a jejíž prvky jsou navíc normované, tedy prvky báze jsou jednotkové a jsou na sebe kolmé.

Tento pojem je důležitý pro konečně i nekonečně rozměrné prostory a obzvláště pak pro Hilbertovy prostory.

Konečně rozměrné prostory

Nechť \(V\) je konečně rozměrný eukleidovský vektorový prostor se skalárním součinem \(\langle \cdot, \cdot \rangle\), který indukuje normu \(\|\cdot\|\). Pod ortonormální bází prostoru \(V\) pak rozumíme bázi \(B = \{b_1,\ldots,b_n\}\) z \( V \) s těmito vlastnostmi:

  • \(\|b_i\| = 1\) pro všechny \(i\in\{1,\ldots,n\}\).
  • \(\langle b_i, b_j \rangle = 0\) pro všechny \(i,j \in\{1,\ldots,n\}\) s \(i \neq j\).

Například následující množina je ortonormální bází euklidovského vektorového prostoru \(\mathbb{R}^3\) (spolu s přirozeně definovaným skalárním součinem).

\(\vec i = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},\vec j = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},\vec k = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\)

Každý z těchto vektorů má délku 1 a všechny jsou na sebe kolmé protože jejich skalární součin je roven nule.

Základním algoritmem pro získání ortonormální báze z libovolné báze je Gramův-Schmidtův ortogonalizační proces.

Obecný případ

V obecném případě unitárního prostoru \(V\) nekonečné dimenze, nazýváme ortonormálním systémem \( S \) ve \( V \) takový systém, jehož lineární obal leží hustě ve \( V \).

Úplný ortonormální systém \(S\) má proto tu vlastnost, že pro každý prvek \(v \in V\) můžeme psát Fourierův rozvoj:

\(v=\sum_{u \in S} \langle v, u \rangle u \).

Je důležité zdůraznit, že ve smyslu tohoto odstavce, v protikladu k případu s konečnou dimenzí, není ortonormální báze žádnou bází v běžném smyslu lineární algebry. To znamená, že prvek \( v \) nelze obecně zapsat jako lineární kombinaci konečného počtu bázových vektorů (prvků z \( S \)), ale jen jako sumu počitatelného nekonečného počtu prvků z \( S \), tedy jako nekonečnou řadu. Jinými slovy: Lineární obal není roven prostoru \( V \), leží ale hustě v tomto prostoru.

Externí odkazy