dokončit zcela nový balíček 1 000 000 fotografií na plných 100 procent !
Nedostižná hranice 4 000 000 fotografií se února 2026 už nedožije...

Osmičková soustava
Z Multimediaexpo.cz
Osmičková (oktalová, oktální) soustava je číselná soustava o základu 8, která (v tradičním zápisu) může obsahovat cifry 0, 1, 2, 3, 4, 5, 6 a 7.
Například číslo 31 v oktální soustavě odpovídá číslu 25 (tj. 3×8+1) v běžně používané soustavě desítkové.
Díky tomu, že je oktální soustava snadno převeditelná do binární soustavy (8 je mocninou dvojky), často se používala v oblasti informatiky. Příkladem může být nastavení přístupových práv v operačních systémech unixového typu.
Obsah[skrýt]
|
Převody čísel
Převod z desítkové do osmičkové soustavy
Metoda postupného dělení 8 je používána pro převod celých čísel v desítkové soustavě do soustavy osmičkové a spočívá v postupném dělení číslem 8. Původní číslo celočíselně vydělíme číslem 8 a zvlášť si zapisujeme zbytky po tomto dělení – označme je jako
Například:
Mějme číslo 900 v desítkové soustavě, které chceme převést do osmičkové soustavy. Nechť symbol
900 div 8 = 112 a
112 div 8 = 14 a
14 div 8 = 1 a
1 div 8 = 0 a
Zbytky po dělení zapisujeme zprava doleva – avšak číslo čteme zleva doprava. (Pořadí zbytků po dělení je 4, 0, 6, 1 ale zapisujeme je v pořadí 1, 6, 0, 4)
Výsledkem je: (900)10 = (1604)8
Vybrané zlomky v osmičkové soustavě
- (1/2)10 = (0,4)8
- (1/4)10 = (0,2)8
- (1/8)10 = (0,1)8
- (1/10)10 = (0,06341634163416341...)8
- (1/16)10 = (0,04)8
- (1/20)10 = (0,0314631463146...)8
Převod z osmičkové do desítkové soustavy
Převod z osmičkové soustavy do desítkové je konkrétním použitím obecného vztahu
Například:
Mějme číslo 2007 v osmičkové soustavě, které chceme převést do soustavy desítkové. Úpravou obecného vztahu do podoby
Výsledkem je: (2007)8 = (1031)10
Převod z osmičkové do binární soustavy
Převod mezi těmito soustavami je značně ulehčen díky tomu, že číslo 8 je mocninou dvojky. Jednoduše nahradíme každou číslici za její binární reprezentaci. Pro převod můžeme s výhodou použít následující tabulky:
Osmičková číslice | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Binární reprezentace | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
Například: Převod čísla (1572)8 do dvojkové (binární) soustavy.
1 = 001
5 = 101
7 = 111
2 = 010
Výsledkem je: (1572)8 = (001101111010)2
Převod z binární do osmičkové soustavy
Převod je opět poměrně jednoduchý – zápis čísla v binární soustavě rozdělíme na skupiny po 3 bitech a pomocí předchozí tabulky převedeme na číslo v osmičkové soustavě.
Například: Převod čísla (011 111 011 000)2 do osmičkové soustavy.
011 = 3
111 = 7
011 = 3
000 = 0
Výsledkem je: (011 111 011 000)2 = (3730)8
Převod z osmičkové do hexadecimální soustavy
- Související informace naleznete také v článku: Hexadecimální soustava.
Převod mezi těmito dvěma soustavami je řešen pomocí 2 kroků. V prvním kroku převedeme číslo v osmičkové soustavě do soustavy binární, které ve druhém kroku převedeme do soustavy hexadecimální.
Převod z hexadecimální do osmičkové soustavy
- Související informace naleznete také v článku: Hexadecimální číslo.
Tento převod je také řešen pomocí 2 kroků, kdy v prvním kroku převedeme číslo v hexadecimální soustavě do soustavy binární a následně provedeme převod z binární do osmičkové soustavy.
Související články
Externí odkazy
[zobrazit] Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|