V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Relativistická hmotnost

Z Multimediaexpo.cz

Relativistická hmotnost je hmotnost tělesa, kterou měří pozorovatel v teorii relativity. Již podle speciální teorie relativity není hmotnost stejná pro všechny pozorovatele, ale závisí na tom, jak rychle se těleso vůči pozorovateli pohybuje.

Lze ji spočítat podle vzorce

\(m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}\),

kde \(m_0\) je klidová hmotnost (nebo také invariantní či vlastní hmotnost), \(v\) je rychlost tělesa vůči pozorovateli a \(c\) rychlost světla.

Odvození

Uvažujme nepružnou srážku popsanou ve dvou vztažných soustavách popsaných kartézskými souřadnicemi, přičemž boost, jehož rychlost je \(\omega\), probíhá podél osy x. Rozepíšeme zákon zachování energie a zákon zachování hybnosti v nečárkované a čárkované soustavě jako

\(m_1+m_2 = M,\,\)
\(v_1 m_1+v_2m_2=V M,\,\)
\(m'_1+m'_2 = M',\,\)
\(v'_1 m'_1+v'_2m'_2=V' M'.\,\)

Dále doplníme vztahy pro sčítání rychlostí

\(v'_1=\frac{v_1-\omega}{1-\frac{v_1\omega}{c^2}},\)
\(v'_2=\frac{v_2-\omega}{1-\frac{v_2\omega}{c^2}},\)
\(V'=\frac{V-\omega}{1-\frac{V\omega}{c^2}}.\)

Pro jednoduchost položíme \(v_1=0\). Dosadíme zbylé rovnice do rovnice čtvrté a získáme vztah

\((m_1 m'_2-m'_1 m_2+m_2 m'_1 \,\frac{v_2 \omega}{c^2})=0.\,\)

Nyní předpokládejme, že se hmotnost mění jen v závislosti na velikosti rychlosti daného objektu. To je dobře odůvodněný předpoklad, protože kvůli homogenitě prostoru nemůže hmotnost záviset na poloze a kvůli rotační symetrii ani na směru rychlosti. Proto můžeme psát

\(m_1={}^0m_1 f(0),\,\)
\(m'_1={}^0m_1 f(\omega),\,\)
\(m_2={}^0m_2 f(v_2),\,\)
\(m'_2={}^0m_2 f(v_2 -\omega),\,\)

předchozí rovnici tedy přepíšeme na

\(\frac{f(v-\omega)}{f(\omega)f(v_2)}\frac{1}{1-\frac{v_2\omega}{c^2}}=1.\,\)

Pro \(v_2=\omega\) tedy (za podmínky \(f(0) = 1\)) získáme

\(f(\omega)=\frac{1}{\sqrt{1-\frac{\omega^2}{c^2}}},\)

což je právě vztah pro relativistickou hmotnost.