Teorie grup

Z Multimediaexpo.cz

Teorie grup je matematická disciplína zabývající se studiem grup. Je podoborem algebry. Má mnoho aplikací v celé matematice i v dalších oborech – fyzice, informatice či chemii.

Obsah

Historie

Počátky teorie grup sahají do posledních let 18. a počátku 19. století, kdy se začala vyvíjet jako důsledek rozvoje teorie algebraických rovnic, teorie čísel a geometrie. Prvními matematiky, kteří se zabývali touto oblastí byli Leonhard Euler, Joseph Louis Lagrange, Carl Friedrich Gauss, Niels Henrik Abel a Évariste Galois.

Moderní definici grupy podal roku 1882 – Walther von Dyck.

Grupa

Související informace můžete najít také v článku: Grupa

Grupa je základním pojmem teorie grup. Je definována jako množina \(\mathbb{G}\) spolu s binární operací \(\cdot\) splňující tři grupové axiomy:

Asociativita: \(f \cdot (g \cdot h) = (f \cdot g) \cdot h\)
Existence neutrálního prvku: \((\exists e) (\forall g) \quad g \cdot e = e \cdot g = g\)
Existence inverzních prvků: \((\forall g) (\exists h) \quad g \cdot h = h \cdot g = e\)

Důležité věty teorie grup

Související články

Literatura