Vlnová rovnice

Z Multimediaexpo.cz

Vlnová rovnice je významnou hyperbolickou parciální diferenciální rovnicí druhého řádu, která popisuje celou řadu vlnění, ať už v akustice, optice, elektromagnetismu, nebo v mechanice při popisu strun nebo kapalin. Jako vlnovou rovnici označujeme rovnici, kterou lze vyjádřit ve tvaru

Puls na struně s upevněnými konci modelovaný jednorozměrnou vlnovou rovnicí.
\(\frac{1}{c^2}\frac{\partial^2 z}{\partial t^2} = \frac{\partial^2 z}{\partial x_1^2} + \frac{\partial^2 z}{\partial x_2^2} + ... + \frac{\partial^2 z}{\partial x_n^2},\)

což bývá zpravidla ekvivalentně zapisováno pomocí laplaceova operátoru jako

\(\frac{1}{c^2}\frac{\partial^2 z}{\partial t^2} = \Delta z.\)

\(z\) přitom představuje skalární funkci polohy a času.

Pod pojmem vlnová rovnice je obvykle myšlena homogenní rovnice. V obecnějším tvaru má vlnová rovnice nehomogenní vyjádření

\(\frac{1}{c^2}\frac{\partial^2 z}{\partial t^2} = \Delta z + f(x_1,x_2,...,x_n)\)

Při popisu vlnění se pojem vlnová rovnice užívá k označení diferenciální rovnice, která charakterizuje dynamiku daného vlnění. V takovém případě může být označení vlnová rovnice použito pro libovolnou (i nelineární) diferenciální rovnici.

Související články